基于SVM的风景视频类型分类

Zhi Min
{"title":"基于SVM的风景视频类型分类","authors":"Zhi Min","doi":"10.1109/PRIMEASIA.2009.5397389","DOIUrl":null,"url":null,"abstract":"In this paper SVM algorithm is applied to classify the scenery video types in compressed domain. Firstly we extract video sequences randomly from scenery video and detect representative frames from the video sequences; secondly we extract features such as color layout, dominant color, edge histogram and face feature; then according to SVM, representative frames are classified as natural scenery, personality, animal and plant. Experimental results have shown that the result of our algorithm is very high accuracy.","PeriodicalId":217369,"journal":{"name":"2009 Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics (PrimeAsia)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scenery video type classification based on SVM\",\"authors\":\"Zhi Min\",\"doi\":\"10.1109/PRIMEASIA.2009.5397389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper SVM algorithm is applied to classify the scenery video types in compressed domain. Firstly we extract video sequences randomly from scenery video and detect representative frames from the video sequences; secondly we extract features such as color layout, dominant color, edge histogram and face feature; then according to SVM, representative frames are classified as natural scenery, personality, animal and plant. Experimental results have shown that the result of our algorithm is very high accuracy.\",\"PeriodicalId\":217369,\"journal\":{\"name\":\"2009 Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics (PrimeAsia)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics (PrimeAsia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIMEASIA.2009.5397389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics (PrimeAsia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIMEASIA.2009.5397389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用支持向量机算法对压缩域的景物视频类型进行分类。首先从场景视频中随机提取视频序列,从视频序列中检测具有代表性的帧;其次提取颜色布局、主色、边缘直方图和人脸特征;然后根据支持向量机将代表性框架分类为自然风光、个性、动植物。实验结果表明,该算法具有很高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scenery video type classification based on SVM
In this paper SVM algorithm is applied to classify the scenery video types in compressed domain. Firstly we extract video sequences randomly from scenery video and detect representative frames from the video sequences; secondly we extract features such as color layout, dominant color, edge histogram and face feature; then according to SVM, representative frames are classified as natural scenery, personality, animal and plant. Experimental results have shown that the result of our algorithm is very high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信