Anes Redžepagić, Christoffer Loeffler, Tobias Feigl, Christopher Mutschler
{"title":"增强现实辅助过程指导的质量意识","authors":"Anes Redžepagić, Christoffer Loeffler, Tobias Feigl, Christopher Mutschler","doi":"10.1109/ISMAR-Adjunct51615.2020.00046","DOIUrl":null,"url":null,"abstract":"The ongoing automation of modern production processes requires novel human-computer interaction concepts that support employees in dealing with the unstoppable increase in time pressure, cognitive load, and the required fine-grained and process-specific knowledge. Augmented Reality (AR) systems support employees by guiding and teaching work processes. Such systems still lack a precise process quality analysis (monitoring), which is, however, crucial to close gaps in the quality assurance of industrial processes.We combine inertial sensors, mounted on work tools, with AR headsets to enrich modern assistance systems with a sense of process quality. For this purpose, we develop a Machine Learning (ML) classifier that predicts quality metrics from a 9-degrees of freedom inertial measurement unit, while we simultaneously guide and track the work processes with a HoloLens AR system. In our user study, 6 test subjects perform typical assembly tasks with our system. We evaluate the tracking accuracy of the system based on a precise optical reference system and evaluate the classification of each work step quality based on the collected ground truth data. Our evaluation shows a tracking accuracy of fast dynamic movements of 4.92mm and our classifier predicts the actions carried out with mean F1 value of 93.8% on average.","PeriodicalId":433361,"journal":{"name":"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Sense of Quality for Augmented Reality Assisted Process Guidance\",\"authors\":\"Anes Redžepagić, Christoffer Loeffler, Tobias Feigl, Christopher Mutschler\",\"doi\":\"10.1109/ISMAR-Adjunct51615.2020.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ongoing automation of modern production processes requires novel human-computer interaction concepts that support employees in dealing with the unstoppable increase in time pressure, cognitive load, and the required fine-grained and process-specific knowledge. Augmented Reality (AR) systems support employees by guiding and teaching work processes. Such systems still lack a precise process quality analysis (monitoring), which is, however, crucial to close gaps in the quality assurance of industrial processes.We combine inertial sensors, mounted on work tools, with AR headsets to enrich modern assistance systems with a sense of process quality. For this purpose, we develop a Machine Learning (ML) classifier that predicts quality metrics from a 9-degrees of freedom inertial measurement unit, while we simultaneously guide and track the work processes with a HoloLens AR system. In our user study, 6 test subjects perform typical assembly tasks with our system. We evaluate the tracking accuracy of the system based on a precise optical reference system and evaluate the classification of each work step quality based on the collected ground truth data. Our evaluation shows a tracking accuracy of fast dynamic movements of 4.92mm and our classifier predicts the actions carried out with mean F1 value of 93.8% on average.\",\"PeriodicalId\":433361,\"journal\":{\"name\":\"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Sense of Quality for Augmented Reality Assisted Process Guidance
The ongoing automation of modern production processes requires novel human-computer interaction concepts that support employees in dealing with the unstoppable increase in time pressure, cognitive load, and the required fine-grained and process-specific knowledge. Augmented Reality (AR) systems support employees by guiding and teaching work processes. Such systems still lack a precise process quality analysis (monitoring), which is, however, crucial to close gaps in the quality assurance of industrial processes.We combine inertial sensors, mounted on work tools, with AR headsets to enrich modern assistance systems with a sense of process quality. For this purpose, we develop a Machine Learning (ML) classifier that predicts quality metrics from a 9-degrees of freedom inertial measurement unit, while we simultaneously guide and track the work processes with a HoloLens AR system. In our user study, 6 test subjects perform typical assembly tasks with our system. We evaluate the tracking accuracy of the system based on a precise optical reference system and evaluate the classification of each work step quality based on the collected ground truth data. Our evaluation shows a tracking accuracy of fast dynamic movements of 4.92mm and our classifier predicts the actions carried out with mean F1 value of 93.8% on average.