基于自适应事件姿态估计和相机传感器的移动机器人制导

Miguel Martínez-Rey, F. Espinosa, Alfredo Gardel Vicente, Carlos Santos, E. Santiso
{"title":"基于自适应事件姿态估计和相机传感器的移动机器人制导","authors":"Miguel Martínez-Rey, F. Espinosa, Alfredo Gardel Vicente, Carlos Santos, E. Santiso","doi":"10.1109/EBCCSP.2016.7605089","DOIUrl":null,"url":null,"abstract":"We present the application of an event-based state estimator to the guidance of a mobile robot. The control feedback loop is closed by means on an estimator based on an Unscented Kalman Filter (UKF) with event-based updates. The estimator requests measurements from a camera sensor only when it needs them. The measurements are triggered by an adaptive condition on the pose estimation error covariance matrix. The main advantage of this method is that it allows for reducing the volume of CPU intensive image processing which is characteristic of these kind of sensors, as well as avoiding the unnecessary overload of the communication channel. The main contribution of the current work is the actual implementation with a P3-DX robotic unit remotely controlled. We discuss practical aspects of the implementation and provide performance results for different parameter settings.","PeriodicalId":411767,"journal":{"name":"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mobile robot guidance using adaptive event-based pose estimation and camera sensor\",\"authors\":\"Miguel Martínez-Rey, F. Espinosa, Alfredo Gardel Vicente, Carlos Santos, E. Santiso\",\"doi\":\"10.1109/EBCCSP.2016.7605089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the application of an event-based state estimator to the guidance of a mobile robot. The control feedback loop is closed by means on an estimator based on an Unscented Kalman Filter (UKF) with event-based updates. The estimator requests measurements from a camera sensor only when it needs them. The measurements are triggered by an adaptive condition on the pose estimation error covariance matrix. The main advantage of this method is that it allows for reducing the volume of CPU intensive image processing which is characteristic of these kind of sensors, as well as avoiding the unnecessary overload of the communication channel. The main contribution of the current work is the actual implementation with a P3-DX robotic unit remotely controlled. We discuss practical aspects of the implementation and provide performance results for different parameter settings.\",\"PeriodicalId\":411767,\"journal\":{\"name\":\"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBCCSP.2016.7605089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBCCSP.2016.7605089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于事件的状态估计器在移动机器人导引中的应用。控制反馈回路通过基于事件更新的无气味卡尔曼滤波器(UKF)估计器关闭。估计器只在需要时才向相机传感器请求测量值。测量由位姿估计误差协方差矩阵上的自适应条件触发。这种方法的主要优点是,它允许减少CPU密集型图像处理的体积,这是这类传感器的特点,以及避免不必要的通信信道过载。当前工作的主要贡献是实际实现了一个遥控的P3-DX机器人单元。我们讨论了实现的实际方面,并提供了不同参数设置的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile robot guidance using adaptive event-based pose estimation and camera sensor
We present the application of an event-based state estimator to the guidance of a mobile robot. The control feedback loop is closed by means on an estimator based on an Unscented Kalman Filter (UKF) with event-based updates. The estimator requests measurements from a camera sensor only when it needs them. The measurements are triggered by an adaptive condition on the pose estimation error covariance matrix. The main advantage of this method is that it allows for reducing the volume of CPU intensive image processing which is characteristic of these kind of sensors, as well as avoiding the unnecessary overload of the communication channel. The main contribution of the current work is the actual implementation with a P3-DX robotic unit remotely controlled. We discuss practical aspects of the implementation and provide performance results for different parameter settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信