非对称竞标者之间的合并:一个Logit第二价格拍卖模型

Luke M. Froeb, S. Tschantz, P. Crooke
{"title":"非对称竞标者之间的合并:一个Logit第二价格拍卖模型","authors":"Luke M. Froeb, S. Tschantz, P. Crooke","doi":"10.2139/ssrn.69415","DOIUrl":null,"url":null,"abstract":"In this paper, we derive estimators of, and closed-form (non-integral) expressions for, the distribution of bids in an extreme value, asymmetric, second-price, private-values auction. In equilibrium, prices (winning bids) and shares (winning probabilities) have a simple monotonic relationship--higher-value firms win more frequently and at better prices than lower-value firms. Since the extreme value distribution is closed under the maximum function, the value of the merged coalition also has an extreme value distribution and thus lies on the same price/share curve. Consequently, merger price effects can be computed as a movement along the price/share curve, from the average pre-merger share to the post-merger aggregate share. The parameter determining how much winning prices change is the standard deviation of the extreme value component. Merger efficiency claims can be benchmarked against the marginal cost reductions necessary to offset merger price effects.","PeriodicalId":151613,"journal":{"name":"Industrial Organization & Regulation eJournal","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Mergers Among Asymmetric Bidders: A Logit Second-Price Auction Model\",\"authors\":\"Luke M. Froeb, S. Tschantz, P. Crooke\",\"doi\":\"10.2139/ssrn.69415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive estimators of, and closed-form (non-integral) expressions for, the distribution of bids in an extreme value, asymmetric, second-price, private-values auction. In equilibrium, prices (winning bids) and shares (winning probabilities) have a simple monotonic relationship--higher-value firms win more frequently and at better prices than lower-value firms. Since the extreme value distribution is closed under the maximum function, the value of the merged coalition also has an extreme value distribution and thus lies on the same price/share curve. Consequently, merger price effects can be computed as a movement along the price/share curve, from the average pre-merger share to the post-merger aggregate share. The parameter determining how much winning prices change is the standard deviation of the extreme value component. Merger efficiency claims can be benchmarked against the marginal cost reductions necessary to offset merger price effects.\",\"PeriodicalId\":151613,\"journal\":{\"name\":\"Industrial Organization & Regulation eJournal\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Organization & Regulation eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.69415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Organization & Regulation eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.69415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在本文中,我们导出了极值、非对称、二次价格、私有价值拍卖中出价分布的估计量和封闭形式(非积分)表达式。在均衡状态下,价格(中标)和股份(中标概率)有一个简单的单调关系——高价值公司比低价值公司更频繁地以更好的价格中标。由于极值分布在最大值函数下是封闭的,因此合并后的联盟的价值也具有极值分布,因此位于相同的价格/份额曲线上。因此,合并价格效应可以计算为沿价格/份额曲线的移动,从合并前的平均份额到合并后的总份额。决定获胜价格变化多少的参数是极值分量的标准偏差。合并效率主张可以以抵消合并价格效应所需的边际成本降低作为基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mergers Among Asymmetric Bidders: A Logit Second-Price Auction Model
In this paper, we derive estimators of, and closed-form (non-integral) expressions for, the distribution of bids in an extreme value, asymmetric, second-price, private-values auction. In equilibrium, prices (winning bids) and shares (winning probabilities) have a simple monotonic relationship--higher-value firms win more frequently and at better prices than lower-value firms. Since the extreme value distribution is closed under the maximum function, the value of the merged coalition also has an extreme value distribution and thus lies on the same price/share curve. Consequently, merger price effects can be computed as a movement along the price/share curve, from the average pre-merger share to the post-merger aggregate share. The parameter determining how much winning prices change is the standard deviation of the extreme value component. Merger efficiency claims can be benchmarked against the marginal cost reductions necessary to offset merger price effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信