一种利用视觉和语义特征的联合纹理描述方法

Zhengping Liang, Zhen Ji, Zhiqiang Wang
{"title":"一种利用视觉和语义特征的联合纹理描述方法","authors":"Zhengping Liang, Zhen Ji, Zhiqiang Wang","doi":"10.1109/ICIG.2007.12","DOIUrl":null,"url":null,"abstract":"Image texture is an important feature in content-based image retrieval system. To characterize the texture feature of images, we propose an effective texture description combining the visual and semantic features. It captures the visual feature of the texture in a greatly reduced texture spectrum scheme; furthermore, it can describe the semantic feature of texture in natural language thanks to linguistic variable. We also put forward a semantic feature extraction algorithm using neural network. Our experimental results demonstrate that the texture description has excellent performance in catching the visual and semantic content of the image texture. In some extent it can bridge the \"semantic gap\" between the low-level visual feature and high-level semantic feature in content-based image retrieval.","PeriodicalId":367106,"journal":{"name":"Fourth International Conference on Image and Graphics (ICIG 2007)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Joint Texture Description Method Utilizing Visual and Semantic Features\",\"authors\":\"Zhengping Liang, Zhen Ji, Zhiqiang Wang\",\"doi\":\"10.1109/ICIG.2007.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image texture is an important feature in content-based image retrieval system. To characterize the texture feature of images, we propose an effective texture description combining the visual and semantic features. It captures the visual feature of the texture in a greatly reduced texture spectrum scheme; furthermore, it can describe the semantic feature of texture in natural language thanks to linguistic variable. We also put forward a semantic feature extraction algorithm using neural network. Our experimental results demonstrate that the texture description has excellent performance in catching the visual and semantic content of the image texture. In some extent it can bridge the \\\"semantic gap\\\" between the low-level visual feature and high-level semantic feature in content-based image retrieval.\",\"PeriodicalId\":367106,\"journal\":{\"name\":\"Fourth International Conference on Image and Graphics (ICIG 2007)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on Image and Graphics (ICIG 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2007.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Image and Graphics (ICIG 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2007.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像纹理是基于内容的图像检索系统的一个重要特征。为了描述图像的纹理特征,我们提出了一种结合视觉特征和语义特征的有效纹理描述方法。它以大大简化的纹理谱方案捕获纹理的视觉特征;此外,利用语言变量可以描述自然语言中织体的语义特征。提出了一种基于神经网络的语义特征提取算法。实验结果表明,纹理描述在捕捉图像纹理的视觉和语义内容方面具有优异的性能。它在一定程度上弥补了基于内容的图像检索中低级视觉特征与高级语义特征之间的“语义鸿沟”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Joint Texture Description Method Utilizing Visual and Semantic Features
Image texture is an important feature in content-based image retrieval system. To characterize the texture feature of images, we propose an effective texture description combining the visual and semantic features. It captures the visual feature of the texture in a greatly reduced texture spectrum scheme; furthermore, it can describe the semantic feature of texture in natural language thanks to linguistic variable. We also put forward a semantic feature extraction algorithm using neural network. Our experimental results demonstrate that the texture description has excellent performance in catching the visual and semantic content of the image texture. In some extent it can bridge the "semantic gap" between the low-level visual feature and high-level semantic feature in content-based image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信