多有源桥式变换器的潮流控制:理论与应用

Yenan Chen, Ping-Jian Wang, Haoran Li, Minjie Chen
{"title":"多有源桥式变换器的潮流控制:理论与应用","authors":"Yenan Chen, Ping-Jian Wang, Haoran Li, Minjie Chen","doi":"10.1109/APEC.2019.8722122","DOIUrl":null,"url":null,"abstract":"This paper investigates the theories and applications of power flow control in multi-active-bridge (MAB) power converters. Many emerging applications including differential power processing, low voltage power delivery in smart homes, multi-cell battery balancers, and photovoltaic energy systems comprise sophisticated power flow across multiple dc voltage ports. Connecting many dc voltage ports together with a MAB converter reduces the power conversion stress, improves the efficiency and enhances the power density. Fundamentally, the advantages of a MAB design come from merging many standalone magnetic components with simple functions into one single magnetic component that performs sophisticated functions. Three control strategies for MAB converters, including phase-shift (PS) control, time-sharing (TS) control, and hybrid phase-shift and time-sharing (PSTS) control are developed to regulate the voltage and precisely control the power flow. A four-port MAB converter prototype designed for low voltage power delivery applications in future smart homes has been built and tested to compare the performance of the three control methods and verify the effectiveness of the proposed architecture.","PeriodicalId":142409,"journal":{"name":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Power Flow Control in Multi-Active-Bridge Converters: Theories and Applications\",\"authors\":\"Yenan Chen, Ping-Jian Wang, Haoran Li, Minjie Chen\",\"doi\":\"10.1109/APEC.2019.8722122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the theories and applications of power flow control in multi-active-bridge (MAB) power converters. Many emerging applications including differential power processing, low voltage power delivery in smart homes, multi-cell battery balancers, and photovoltaic energy systems comprise sophisticated power flow across multiple dc voltage ports. Connecting many dc voltage ports together with a MAB converter reduces the power conversion stress, improves the efficiency and enhances the power density. Fundamentally, the advantages of a MAB design come from merging many standalone magnetic components with simple functions into one single magnetic component that performs sophisticated functions. Three control strategies for MAB converters, including phase-shift (PS) control, time-sharing (TS) control, and hybrid phase-shift and time-sharing (PSTS) control are developed to regulate the voltage and precisely control the power flow. A four-port MAB converter prototype designed for low voltage power delivery applications in future smart homes has been built and tested to compare the performance of the three control methods and verify the effectiveness of the proposed architecture.\",\"PeriodicalId\":142409,\"journal\":{\"name\":\"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2019.8722122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2019.8722122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本文研究了多有源电桥(MAB)电源变换器中潮流控制的理论和应用。许多新兴的应用,包括差分功率处理、智能家居中的低压电力输送、多电池平衡器和光伏能源系统,都包括跨多个直流电压端口的复杂电流。将多个直流电压端口与MAB转换器连接在一起,减少了功率转换应力,提高了效率,提高了功率密度。从根本上说,MAB设计的优势来自于将许多具有简单功能的独立磁性组件合并为一个执行复杂功能的单一磁性组件。针对MAB变换器,提出了相移控制(PS)、分时控制(TS)和相移与分时混合控制(PSTS)三种控制策略来实现电压的调节和潮流的精确控制。为未来智能家居中的低压供电应用设计了一个四端口MAB转换器原型,并进行了测试,以比较三种控制方法的性能,并验证所提出架构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Flow Control in Multi-Active-Bridge Converters: Theories and Applications
This paper investigates the theories and applications of power flow control in multi-active-bridge (MAB) power converters. Many emerging applications including differential power processing, low voltage power delivery in smart homes, multi-cell battery balancers, and photovoltaic energy systems comprise sophisticated power flow across multiple dc voltage ports. Connecting many dc voltage ports together with a MAB converter reduces the power conversion stress, improves the efficiency and enhances the power density. Fundamentally, the advantages of a MAB design come from merging many standalone magnetic components with simple functions into one single magnetic component that performs sophisticated functions. Three control strategies for MAB converters, including phase-shift (PS) control, time-sharing (TS) control, and hybrid phase-shift and time-sharing (PSTS) control are developed to regulate the voltage and precisely control the power flow. A four-port MAB converter prototype designed for low voltage power delivery applications in future smart homes has been built and tested to compare the performance of the three control methods and verify the effectiveness of the proposed architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信