基于PoF和统计相结合的灯具LED阵列可靠性预测方法

Bo Sun, Xuejun Fan, Jiajie Fan, C. Qian, G.Q. Zhang
{"title":"基于PoF和统计相结合的灯具LED阵列可靠性预测方法","authors":"Bo Sun, Xuejun Fan, Jiajie Fan, C. Qian, G.Q. Zhang","doi":"10.1109/EUROSIME.2017.7926264","DOIUrl":null,"url":null,"abstract":"In this work, a physics-of-failure (PoF) reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and catastrophic failures of LEDs. The current in each LED may redistribute when the catastrophic failure occurs in one of LEDs in an array, thus affecting the operation conditions of the entire LED array. A physics-of-failure based reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and the catastrophic failure. Electronic-thermal simulations are utilized to obtain operation conditions, including temperature and current. Meanwhile, statistical models are applied to calculate possibilities of the catastrophic failure in different operation conditions.","PeriodicalId":174615,"journal":{"name":"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A PoF and statistics combined reliability prediction for LED arrays in lamps\",\"authors\":\"Bo Sun, Xuejun Fan, Jiajie Fan, C. Qian, G.Q. Zhang\",\"doi\":\"10.1109/EUROSIME.2017.7926264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a physics-of-failure (PoF) reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and catastrophic failures of LEDs. The current in each LED may redistribute when the catastrophic failure occurs in one of LEDs in an array, thus affecting the operation conditions of the entire LED array. A physics-of-failure based reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and the catastrophic failure. Electronic-thermal simulations are utilized to obtain operation conditions, including temperature and current. Meanwhile, statistical models are applied to calculate possibilities of the catastrophic failure in different operation conditions.\",\"PeriodicalId\":174615,\"journal\":{\"name\":\"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2017.7926264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2017.7926264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,将失效物理(PoF)可靠性预测方法与统计模型相结合,以考虑led的流明衰减与灾难性失效之间的相互作用。当阵列中的一个LED发生灾难性故障时,每个LED中的电流可能会重新分布,从而影响整个LED阵列的工作状态。将基于失效物理的可靠性预测方法与统计模型相结合,考虑了管腔衰减与灾难性失效之间的相互作用。利用电子-热模拟来获得操作条件,包括温度和电流。同时,应用统计模型计算了不同工况下的突变失效可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PoF and statistics combined reliability prediction for LED arrays in lamps
In this work, a physics-of-failure (PoF) reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and catastrophic failures of LEDs. The current in each LED may redistribute when the catastrophic failure occurs in one of LEDs in an array, thus affecting the operation conditions of the entire LED array. A physics-of-failure based reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and the catastrophic failure. Electronic-thermal simulations are utilized to obtain operation conditions, including temperature and current. Meanwhile, statistical models are applied to calculate possibilities of the catastrophic failure in different operation conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信