Bo Sun, Xuejun Fan, Jiajie Fan, C. Qian, G.Q. Zhang
{"title":"基于PoF和统计相结合的灯具LED阵列可靠性预测方法","authors":"Bo Sun, Xuejun Fan, Jiajie Fan, C. Qian, G.Q. Zhang","doi":"10.1109/EUROSIME.2017.7926264","DOIUrl":null,"url":null,"abstract":"In this work, a physics-of-failure (PoF) reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and catastrophic failures of LEDs. The current in each LED may redistribute when the catastrophic failure occurs in one of LEDs in an array, thus affecting the operation conditions of the entire LED array. A physics-of-failure based reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and the catastrophic failure. Electronic-thermal simulations are utilized to obtain operation conditions, including temperature and current. Meanwhile, statistical models are applied to calculate possibilities of the catastrophic failure in different operation conditions.","PeriodicalId":174615,"journal":{"name":"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A PoF and statistics combined reliability prediction for LED arrays in lamps\",\"authors\":\"Bo Sun, Xuejun Fan, Jiajie Fan, C. Qian, G.Q. Zhang\",\"doi\":\"10.1109/EUROSIME.2017.7926264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a physics-of-failure (PoF) reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and catastrophic failures of LEDs. The current in each LED may redistribute when the catastrophic failure occurs in one of LEDs in an array, thus affecting the operation conditions of the entire LED array. A physics-of-failure based reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and the catastrophic failure. Electronic-thermal simulations are utilized to obtain operation conditions, including temperature and current. Meanwhile, statistical models are applied to calculate possibilities of the catastrophic failure in different operation conditions.\",\"PeriodicalId\":174615,\"journal\":{\"name\":\"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2017.7926264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2017.7926264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A PoF and statistics combined reliability prediction for LED arrays in lamps
In this work, a physics-of-failure (PoF) reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and catastrophic failures of LEDs. The current in each LED may redistribute when the catastrophic failure occurs in one of LEDs in an array, thus affecting the operation conditions of the entire LED array. A physics-of-failure based reliability prediction methodology is combined with statistical models to consider the interaction between the lumen depreciation and the catastrophic failure. Electronic-thermal simulations are utilized to obtain operation conditions, including temperature and current. Meanwhile, statistical models are applied to calculate possibilities of the catastrophic failure in different operation conditions.