基于脑电图图论特征的情感状态表征

Rishabh Gupta, T. Falk
{"title":"基于脑电图图论特征的情感状态表征","authors":"Rishabh Gupta, T. Falk","doi":"10.1109/NER.2015.7146688","DOIUrl":null,"url":null,"abstract":"Affective states are typically characterized using spectral power information obtained from electroencephalography (EEG) data collected over specific brain regions. However, while experiencing a complex emotional audio-video stimuli, brain networks transfer information in a highly interactive manner. To characterize this information, we propose using graph theoretical features. Towards this end, first, we established graph theoretical features as meaningful correlates of affective states through Pearson correlation. Then we compared the classification performance of these features with that of conventional spectral power features where percentage increases in classification performance of 7% and 11% were found in arousal and valence, respectively. Moreover, feature level fusion was explored and resulted in better performance as compared to the feature sets alone thus, highlighting the complementarity of EEG graph based features and spectral powers. Overall it is hoped that this study will enhance affective state evaluation via passive brain computer interfaces, thus leading to a plethora of applications such as user experience perception modelling and affective indexing/tagging of videos, to name a few.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"83 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Affective state characterization based on electroencephalography graph-theoretic features\",\"authors\":\"Rishabh Gupta, T. Falk\",\"doi\":\"10.1109/NER.2015.7146688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Affective states are typically characterized using spectral power information obtained from electroencephalography (EEG) data collected over specific brain regions. However, while experiencing a complex emotional audio-video stimuli, brain networks transfer information in a highly interactive manner. To characterize this information, we propose using graph theoretical features. Towards this end, first, we established graph theoretical features as meaningful correlates of affective states through Pearson correlation. Then we compared the classification performance of these features with that of conventional spectral power features where percentage increases in classification performance of 7% and 11% were found in arousal and valence, respectively. Moreover, feature level fusion was explored and resulted in better performance as compared to the feature sets alone thus, highlighting the complementarity of EEG graph based features and spectral powers. Overall it is hoped that this study will enhance affective state evaluation via passive brain computer interfaces, thus leading to a plethora of applications such as user experience perception modelling and affective indexing/tagging of videos, to name a few.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"83 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

情感状态通常是利用从特定脑区域收集的脑电图(EEG)数据获得的频谱功率信息来表征的。然而,在经历复杂的情感视听刺激时,大脑网络以高度互动的方式传递信息。为了描述这些信息,我们建议使用图论特征。为此,首先,我们通过Pearson相关建立了图理论特征作为情感状态的有意义相关。然后,我们将这些特征的分类性能与传统谱功率特征的分类性能进行了比较,其中唤醒和效价的分类性能分别提高了7%和11%。此外,研究人员还探索了特征级融合,与单独的特征集相比,其性能更好,从而突出了基于EEG图的特征和谱功率的互补性。总的来说,希望这项研究将通过被动脑机接口增强情感状态评估,从而导致大量的应用,如用户体验感知建模和情感索引/视频标记,仅举几例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affective state characterization based on electroencephalography graph-theoretic features
Affective states are typically characterized using spectral power information obtained from electroencephalography (EEG) data collected over specific brain regions. However, while experiencing a complex emotional audio-video stimuli, brain networks transfer information in a highly interactive manner. To characterize this information, we propose using graph theoretical features. Towards this end, first, we established graph theoretical features as meaningful correlates of affective states through Pearson correlation. Then we compared the classification performance of these features with that of conventional spectral power features where percentage increases in classification performance of 7% and 11% were found in arousal and valence, respectively. Moreover, feature level fusion was explored and resulted in better performance as compared to the feature sets alone thus, highlighting the complementarity of EEG graph based features and spectral powers. Overall it is hoped that this study will enhance affective state evaluation via passive brain computer interfaces, thus leading to a plethora of applications such as user experience perception modelling and affective indexing/tagging of videos, to name a few.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信