滚动运动下棒束流动特性的实验研究

Xin Li, Peiyao Qi, Sichao Tan, Chao Qi, S. Qiao
{"title":"滚动运动下棒束流动特性的实验研究","authors":"Xin Li, Peiyao Qi, Sichao Tan, Chao Qi, S. Qiao","doi":"10.1115/icone28-65590","DOIUrl":null,"url":null,"abstract":"\n The floating reactor system will be rolling, heaving and other movements affected by waves, wind, etc. These motions will introduce additional inertial force field into the rod bundle, thus affecting the flow characteristics in the rod bundle channel. In order to study the influence of rolling motion on the flow characteristics of rod bundle, a visualization research of the flow field of rod bundle channel with a pitch-to-diameter ratio of 1.326 was carried out under rolling motion. The results show that under a small driving force, the rolling motion has a significant effect on the flow field in the rod bundle, affecting the velocity distribution in different sub-channels, and there is transverse mixing between adjacent sub-channels. With the increase of driving force, the influence of rolling motion is gradually weakened. The flow field distribution under rolling motion is significantly different from that under pulsating flow. The experimental results show that the influence of rolling motion on the middle sub-channel of the rod bundle channel is small, and the influence on the edge sub-channel is large. The velocity field of the subchannels on both sides of the edge fluctuates periodically, and the wave phase is inverse. This study shows that the flow field variation caused by rolling motion is different from that caused by pulsating flow, and the flow field of fuel assembly in floating reactor system under ocean condition is further studied.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on the Flow Characteristics of Rod Bundle Under Rolling Motion\",\"authors\":\"Xin Li, Peiyao Qi, Sichao Tan, Chao Qi, S. Qiao\",\"doi\":\"10.1115/icone28-65590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The floating reactor system will be rolling, heaving and other movements affected by waves, wind, etc. These motions will introduce additional inertial force field into the rod bundle, thus affecting the flow characteristics in the rod bundle channel. In order to study the influence of rolling motion on the flow characteristics of rod bundle, a visualization research of the flow field of rod bundle channel with a pitch-to-diameter ratio of 1.326 was carried out under rolling motion. The results show that under a small driving force, the rolling motion has a significant effect on the flow field in the rod bundle, affecting the velocity distribution in different sub-channels, and there is transverse mixing between adjacent sub-channels. With the increase of driving force, the influence of rolling motion is gradually weakened. The flow field distribution under rolling motion is significantly different from that under pulsating flow. The experimental results show that the influence of rolling motion on the middle sub-channel of the rod bundle channel is small, and the influence on the edge sub-channel is large. The velocity field of the subchannels on both sides of the edge fluctuates periodically, and the wave phase is inverse. This study shows that the flow field variation caused by rolling motion is different from that caused by pulsating flow, and the flow field of fuel assembly in floating reactor system under ocean condition is further studied.\",\"PeriodicalId\":108609,\"journal\":{\"name\":\"Volume 4: Student Paper Competition\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone28-65590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone28-65590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

浮动式反应堆系统会受到波浪、风等的影响而产生翻滚、起伏等运动。这些运动将在杆束中引入额外的惯性力场,从而影响杆束通道内的流动特性。为了研究滚动运动对棒束流动特性的影响,对节径比为1.326的棒束通道在滚动运动下的流场进行了可视化研究。结果表明:在较小的驱动力下,滚动运动对棒束内流场有显著影响,影响了不同子通道内的速度分布,相邻子通道之间存在横向混合;随着驱动力的增大,滚动运动的影响逐渐减弱。滚动运动下的流场分布与脉动运动下的流场分布明显不同。实验结果表明,滚动运动对棒束通道中间子通道的影响较小,而对边缘子通道的影响较大。边缘两侧子通道的速度场呈周期性波动,波相相反。研究表明,滚动运动引起的流场变化不同于脉动运动引起的流场变化,进一步研究了海洋条件下浮动堆系统燃料组件的流场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study on the Flow Characteristics of Rod Bundle Under Rolling Motion
The floating reactor system will be rolling, heaving and other movements affected by waves, wind, etc. These motions will introduce additional inertial force field into the rod bundle, thus affecting the flow characteristics in the rod bundle channel. In order to study the influence of rolling motion on the flow characteristics of rod bundle, a visualization research of the flow field of rod bundle channel with a pitch-to-diameter ratio of 1.326 was carried out under rolling motion. The results show that under a small driving force, the rolling motion has a significant effect on the flow field in the rod bundle, affecting the velocity distribution in different sub-channels, and there is transverse mixing between adjacent sub-channels. With the increase of driving force, the influence of rolling motion is gradually weakened. The flow field distribution under rolling motion is significantly different from that under pulsating flow. The experimental results show that the influence of rolling motion on the middle sub-channel of the rod bundle channel is small, and the influence on the edge sub-channel is large. The velocity field of the subchannels on both sides of the edge fluctuates periodically, and the wave phase is inverse. This study shows that the flow field variation caused by rolling motion is different from that caused by pulsating flow, and the flow field of fuel assembly in floating reactor system under ocean condition is further studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信