{"title":"基于对数正态分布的乳房x线图像边缘检测","authors":"A. El-Zaart, W. K. Al-Jibory","doi":"10.1109/ICTEA.2012.6462889","DOIUrl":null,"url":null,"abstract":"A mammography exam, called a mammogram, is an important examination aid that is designed to help human in the early detection and diagnosis of breast diseases especially in women. Image processing is using for detecting for objects in mammogram images. Edge detection; which is a method of determining the discontinuities in gray level images; is a very important initial step in Image processing. Many classical edge detectors have been developed over time. Some of the well known edge detection operators based on the first derivative of the image are Roberts, Prewitt, Sobel which is traditionally implemented by convolving the image with masks. Also Gaussian distribution has been used to build masks for the first and second derivative. However, this distribution has limit to only symmetric shape. This paper will use to construct the masks, the log-normal distribution which was more general than Gaussian because it has symmetric and asymmetric shape. The constructed masks are applied to images and we obtained good results.","PeriodicalId":245530,"journal":{"name":"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Edge detection in mammogram images using log-normal distribution\",\"authors\":\"A. El-Zaart, W. K. Al-Jibory\",\"doi\":\"10.1109/ICTEA.2012.6462889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mammography exam, called a mammogram, is an important examination aid that is designed to help human in the early detection and diagnosis of breast diseases especially in women. Image processing is using for detecting for objects in mammogram images. Edge detection; which is a method of determining the discontinuities in gray level images; is a very important initial step in Image processing. Many classical edge detectors have been developed over time. Some of the well known edge detection operators based on the first derivative of the image are Roberts, Prewitt, Sobel which is traditionally implemented by convolving the image with masks. Also Gaussian distribution has been used to build masks for the first and second derivative. However, this distribution has limit to only symmetric shape. This paper will use to construct the masks, the log-normal distribution which was more general than Gaussian because it has symmetric and asymmetric shape. The constructed masks are applied to images and we obtained good results.\",\"PeriodicalId\":245530,\"journal\":{\"name\":\"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTEA.2012.6462889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTEA.2012.6462889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Edge detection in mammogram images using log-normal distribution
A mammography exam, called a mammogram, is an important examination aid that is designed to help human in the early detection and diagnosis of breast diseases especially in women. Image processing is using for detecting for objects in mammogram images. Edge detection; which is a method of determining the discontinuities in gray level images; is a very important initial step in Image processing. Many classical edge detectors have been developed over time. Some of the well known edge detection operators based on the first derivative of the image are Roberts, Prewitt, Sobel which is traditionally implemented by convolving the image with masks. Also Gaussian distribution has been used to build masks for the first and second derivative. However, this distribution has limit to only symmetric shape. This paper will use to construct the masks, the log-normal distribution which was more general than Gaussian because it has symmetric and asymmetric shape. The constructed masks are applied to images and we obtained good results.