基于高频的资产价格波动建模与预测

Li-gang Liu, Zhiwu Xiao, Zhihao Hu, Pan Xin
{"title":"基于高频的资产价格波动建模与预测","authors":"Li-gang Liu, Zhiwu Xiao, Zhihao Hu, Pan Xin","doi":"10.1145/3440094.3440386","DOIUrl":null,"url":null,"abstract":"This paper considers the application of price jump information in modeling and forecasting the volatility. We use the method in Corsi et al. (2010) to separate the asset price jump information more effectively, and use the HAR-RV-CJ volatility model containing that information to model and predict the volatility of asset prices. From our research of price volatility of Shanghai Composite Index and Shenzhen Component Index we found that HAR-RV-CJ model which contains jump information is more excellent in predicting out-of-sample prices than other volatility models like HAR-RV, ARFIMA, GARCH and SV.","PeriodicalId":359610,"journal":{"name":"Proceedings of the 2nd Africa-Asia Dialogue Network (AADN) International Conference on Advances in Business Management and Electronic Commerce Research","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and forecasting the asset prices volatility based on high-frequency\",\"authors\":\"Li-gang Liu, Zhiwu Xiao, Zhihao Hu, Pan Xin\",\"doi\":\"10.1145/3440094.3440386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the application of price jump information in modeling and forecasting the volatility. We use the method in Corsi et al. (2010) to separate the asset price jump information more effectively, and use the HAR-RV-CJ volatility model containing that information to model and predict the volatility of asset prices. From our research of price volatility of Shanghai Composite Index and Shenzhen Component Index we found that HAR-RV-CJ model which contains jump information is more excellent in predicting out-of-sample prices than other volatility models like HAR-RV, ARFIMA, GARCH and SV.\",\"PeriodicalId\":359610,\"journal\":{\"name\":\"Proceedings of the 2nd Africa-Asia Dialogue Network (AADN) International Conference on Advances in Business Management and Electronic Commerce Research\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Africa-Asia Dialogue Network (AADN) International Conference on Advances in Business Management and Electronic Commerce Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3440094.3440386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Africa-Asia Dialogue Network (AADN) International Conference on Advances in Business Management and Electronic Commerce Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440094.3440386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了价格跳跃信息在波动性建模和预测中的应用。我们使用Corsi等人(2010)的方法更有效地分离资产价格跳跃信息,并使用包含该信息的HAR-RV-CJ波动率模型对资产价格波动率进行建模和预测。通过对上证综合指数和深成指价格波动的研究发现,包含跳跃信息的HAR-RV- cj模型比HAR-RV、ARFIMA、GARCH和SV等波动模型更能预测样本外价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and forecasting the asset prices volatility based on high-frequency
This paper considers the application of price jump information in modeling and forecasting the volatility. We use the method in Corsi et al. (2010) to separate the asset price jump information more effectively, and use the HAR-RV-CJ volatility model containing that information to model and predict the volatility of asset prices. From our research of price volatility of Shanghai Composite Index and Shenzhen Component Index we found that HAR-RV-CJ model which contains jump information is more excellent in predicting out-of-sample prices than other volatility models like HAR-RV, ARFIMA, GARCH and SV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信