简并非等温半导体的广义Scharfetter-Gummel格式

M. Kantner
{"title":"简并非等温半导体的广义Scharfetter-Gummel格式","authors":"M. Kantner","doi":"10.1109/NUSOD.2019.8806839","DOIUrl":null,"url":null,"abstract":"We present a highly accurate generalization of the Scharfetter–Gummel scheme for the discretization of the current densities in degenerate semiconductors under non-isothermal conditions. The underlying model relies on the Kelvin formula for the Seebeck coefficient, which has the intriguing property that the ∇T -term in the electrical current density expressions vanishes exactly when passing to the drift-diffusion form – even though the thermoelectric cross-coupling is fully taken into account.","PeriodicalId":369769,"journal":{"name":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A generalized Scharfetter–Gummel scheme for degenerate and non-isothermal semiconductor\",\"authors\":\"M. Kantner\",\"doi\":\"10.1109/NUSOD.2019.8806839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a highly accurate generalization of the Scharfetter–Gummel scheme for the discretization of the current densities in degenerate semiconductors under non-isothermal conditions. The underlying model relies on the Kelvin formula for the Seebeck coefficient, which has the intriguing property that the ∇T -term in the electrical current density expressions vanishes exactly when passing to the drift-diffusion form – even though the thermoelectric cross-coupling is fully taken into account.\",\"PeriodicalId\":369769,\"journal\":{\"name\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2019.8806839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2019.8806839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了非等温条件下简并半导体中电流密度离散化的高度精确的Scharfetter-Gummel格式的推广。基础模型依赖于塞贝克系数的开尔文公式,该公式具有有趣的性质,即电流密度表达式中的∇T项在通过漂移-扩散形式时完全消失-即使充分考虑了热电交叉耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized Scharfetter–Gummel scheme for degenerate and non-isothermal semiconductor
We present a highly accurate generalization of the Scharfetter–Gummel scheme for the discretization of the current densities in degenerate semiconductors under non-isothermal conditions. The underlying model relies on the Kelvin formula for the Seebeck coefficient, which has the intriguing property that the ∇T -term in the electrical current density expressions vanishes exactly when passing to the drift-diffusion form – even though the thermoelectric cross-coupling is fully taken into account.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信