基于多通道相干分析的多声纳目标探测

N. Klausner, M. Azimi-Sadjadi, J. D. Tucker
{"title":"基于多通道相干分析的多声纳目标探测","authors":"N. Klausner, M. Azimi-Sadjadi, J. D. Tucker","doi":"10.1109/OCEANS.2010.5663881","DOIUrl":null,"url":null,"abstract":"The use of multiple disparate platforms in many remote sensing and surveillance applications allows one to exploit the coherent information shared among all sensory systems thereby potentially reducing the risk of making single-sensory biased detection and classification decisions. This paper introduces a target detection method based upon multi-channel coherence analysis (MCA) framework which optimally decomposes the multi-channel data to analyze their linear dependence or coherence. This decomposition then allows one to extract MCA features that can be used to implement a coherence-based detector. This detector is applied to a data set of underwater side-scan sonar imagery provided by the Naval Surface Warfare Center Panama City Division. This database contains data from 2 disparate sonar systems, namely one high frequency (HF) sonar and one broadband (BB) sonar coregistered over the same region on the sea floor. Test results illustrate the effectiveness of the proposed multi-platform detection system in terms of probability of detection, false alarm rate, and receiver operating characteristic (ROC) curves.","PeriodicalId":363534,"journal":{"name":"OCEANS 2010 MTS/IEEE SEATTLE","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-sonar target detection using multi-channel coherence analysis\",\"authors\":\"N. Klausner, M. Azimi-Sadjadi, J. D. Tucker\",\"doi\":\"10.1109/OCEANS.2010.5663881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of multiple disparate platforms in many remote sensing and surveillance applications allows one to exploit the coherent information shared among all sensory systems thereby potentially reducing the risk of making single-sensory biased detection and classification decisions. This paper introduces a target detection method based upon multi-channel coherence analysis (MCA) framework which optimally decomposes the multi-channel data to analyze their linear dependence or coherence. This decomposition then allows one to extract MCA features that can be used to implement a coherence-based detector. This detector is applied to a data set of underwater side-scan sonar imagery provided by the Naval Surface Warfare Center Panama City Division. This database contains data from 2 disparate sonar systems, namely one high frequency (HF) sonar and one broadband (BB) sonar coregistered over the same region on the sea floor. Test results illustrate the effectiveness of the proposed multi-platform detection system in terms of probability of detection, false alarm rate, and receiver operating characteristic (ROC) curves.\",\"PeriodicalId\":363534,\"journal\":{\"name\":\"OCEANS 2010 MTS/IEEE SEATTLE\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2010 MTS/IEEE SEATTLE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2010.5663881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2010 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2010.5663881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在许多遥感和监测应用中使用多个不同的平台,使人们能够利用所有感官系统之间共享的连贯信息,从而潜在地减少做出单一感官有偏见的检测和分类决策的风险。介绍了一种基于多通道相干分析(MCA)框架的目标检测方法,该方法对多通道数据进行优化分解,分析其线性相关性或相干性。然后,这种分解允许提取可用于实现基于相干的检测器的MCA特征。该探测器应用于由海军水面作战中心巴拿马城分部提供的水下侧扫声纳图像数据集。该数据库包含来自2个不同声纳系统的数据,即一个高频(HF)声纳和一个宽带(BB)声纳在海底同一区域共同注册。测试结果表明,该多平台检测系统在检测概率、虚警率和受试者工作特征(ROC)曲线方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-sonar target detection using multi-channel coherence analysis
The use of multiple disparate platforms in many remote sensing and surveillance applications allows one to exploit the coherent information shared among all sensory systems thereby potentially reducing the risk of making single-sensory biased detection and classification decisions. This paper introduces a target detection method based upon multi-channel coherence analysis (MCA) framework which optimally decomposes the multi-channel data to analyze their linear dependence or coherence. This decomposition then allows one to extract MCA features that can be used to implement a coherence-based detector. This detector is applied to a data set of underwater side-scan sonar imagery provided by the Naval Surface Warfare Center Panama City Division. This database contains data from 2 disparate sonar systems, namely one high frequency (HF) sonar and one broadband (BB) sonar coregistered over the same region on the sea floor. Test results illustrate the effectiveness of the proposed multi-platform detection system in terms of probability of detection, false alarm rate, and receiver operating characteristic (ROC) curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信