{"title":"基于滤波器样条插值的低阶宽带互连模型实现","authors":"A. Nieuwoudt, Mehboob Alam, Y. Massoud","doi":"10.1109/ASPDAC.2007.358014","DOIUrl":null,"url":null,"abstract":"In the paper, we develop a systematic methodology for modeling sampled interconnect frequency response data based on spline interpolation. Through piecewise polynomial interpolation, we are able to avoid the numerical problems associated with global polynomial fitting and generate higher order systems to model simulated or measured wideband frequency response data. We reduce the complexity of the generated systems using a data point pruning algorithm and by applying model order reduction based on balanced truncation. The methodology provides substantially greater accuracy than global polynomial approximation while only having O(n) growth in model complexity.","PeriodicalId":362373,"journal":{"name":"2007 Asia and South Pacific Design Automation Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reduced-Order Wide-Band Interconnect Model Realization using Filter-Based Spline Interpolation\",\"authors\":\"A. Nieuwoudt, Mehboob Alam, Y. Massoud\",\"doi\":\"10.1109/ASPDAC.2007.358014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we develop a systematic methodology for modeling sampled interconnect frequency response data based on spline interpolation. Through piecewise polynomial interpolation, we are able to avoid the numerical problems associated with global polynomial fitting and generate higher order systems to model simulated or measured wideband frequency response data. We reduce the complexity of the generated systems using a data point pruning algorithm and by applying model order reduction based on balanced truncation. The methodology provides substantially greater accuracy than global polynomial approximation while only having O(n) growth in model complexity.\",\"PeriodicalId\":362373,\"journal\":{\"name\":\"2007 Asia and South Pacific Design Automation Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Asia and South Pacific Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2007.358014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Asia and South Pacific Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2007.358014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reduced-Order Wide-Band Interconnect Model Realization using Filter-Based Spline Interpolation
In the paper, we develop a systematic methodology for modeling sampled interconnect frequency response data based on spline interpolation. Through piecewise polynomial interpolation, we are able to avoid the numerical problems associated with global polynomial fitting and generate higher order systems to model simulated or measured wideband frequency response data. We reduce the complexity of the generated systems using a data point pruning algorithm and by applying model order reduction based on balanced truncation. The methodology provides substantially greater accuracy than global polynomial approximation while only having O(n) growth in model complexity.