移动机器人全局路径规划中异构蚁群优化算法与遗传算法的比较

Joon-Woo Lee, Byoung-Suk Choi, Kyoung-Taik Park, Jujang Lee
{"title":"移动机器人全局路径规划中异构蚁群优化算法与遗传算法的比较","authors":"Joon-Woo Lee, Byoung-Suk Choi, Kyoung-Taik Park, Jujang Lee","doi":"10.1109/ISIE.2011.5984275","DOIUrl":null,"url":null,"abstract":"We proposed a novel ACO algorithm to solve the global path planning problems in the previous paper, called Heterogeneous ACO (HACO) algorithm. In this paper, we compare the performance of HACO algorithm with the modified Genetic Algorithm (GA) for global path planning. The HACO algorithm differs from the Conventional ACO (CACO) algorithm for the path planning in three respects. First, we proposed modified Transition Probability Function (TPF) and Pheromone Update Rule (PUR). Second, we newly introduced the Path Crossover (PC) in the PUR. Finally, we also proposed the first introduction of the heterogeneous ants in the ACO algorithm. We apply the proposed HACO algorithm and modified GA to the general global path planning problems and compare the performance of these through the computer simulation.","PeriodicalId":162453,"journal":{"name":"2011 IEEE International Symposium on Industrial Electronics","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Comparison between heterogeneous ant colony optimization algorithm and Genetic Algorithm for global path planning of mobile robot\",\"authors\":\"Joon-Woo Lee, Byoung-Suk Choi, Kyoung-Taik Park, Jujang Lee\",\"doi\":\"10.1109/ISIE.2011.5984275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a novel ACO algorithm to solve the global path planning problems in the previous paper, called Heterogeneous ACO (HACO) algorithm. In this paper, we compare the performance of HACO algorithm with the modified Genetic Algorithm (GA) for global path planning. The HACO algorithm differs from the Conventional ACO (CACO) algorithm for the path planning in three respects. First, we proposed modified Transition Probability Function (TPF) and Pheromone Update Rule (PUR). Second, we newly introduced the Path Crossover (PC) in the PUR. Finally, we also proposed the first introduction of the heterogeneous ants in the ACO algorithm. We apply the proposed HACO algorithm and modified GA to the general global path planning problems and compare the performance of these through the computer simulation.\",\"PeriodicalId\":162453,\"journal\":{\"name\":\"2011 IEEE International Symposium on Industrial Electronics\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2011.5984275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2011.5984275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在之前的文章中,我们提出了一种求解全局路径规划问题的新型蚁群算法——异构蚁群算法(HACO)。在本文中,我们比较了HACO算法与改进的遗传算法(GA)在全局路径规划中的性能。HACO算法在路径规划方面与传统蚁群算法(CACO)有三个不同之处。首先,提出了改进的转移概率函数(TPF)和信息素更新规则(PUR)。其次,我们在PUR中新引入了路径交叉(PC)。最后,我们还首次提出在蚁群算法中引入异构蚂蚁。我们将提出的HACO算法和改进的遗传算法应用于一般全局路径规划问题,并通过计算机仿真比较了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison between heterogeneous ant colony optimization algorithm and Genetic Algorithm for global path planning of mobile robot
We proposed a novel ACO algorithm to solve the global path planning problems in the previous paper, called Heterogeneous ACO (HACO) algorithm. In this paper, we compare the performance of HACO algorithm with the modified Genetic Algorithm (GA) for global path planning. The HACO algorithm differs from the Conventional ACO (CACO) algorithm for the path planning in three respects. First, we proposed modified Transition Probability Function (TPF) and Pheromone Update Rule (PUR). Second, we newly introduced the Path Crossover (PC) in the PUR. Finally, we also proposed the first introduction of the heterogeneous ants in the ACO algorithm. We apply the proposed HACO algorithm and modified GA to the general global path planning problems and compare the performance of these through the computer simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信