S. Arima, Yu Sasaki, Sho Morie, Yuto Kataoka, Chending Mao, Jia Lin
{"title":"生产动态的数据驱动建模","authors":"S. Arima, Yu Sasaki, Sho Morie, Yuto Kataoka, Chending Mao, Jia Lin","doi":"10.1109/ISSM55802.2022.10026908","DOIUrl":null,"url":null,"abstract":"This study introduced the application of VAR-LiNGAM, and Backpropagation Neural Network with node2vec for feasible data-driven modeling of dynamics of semiconductor production system in which the scale and complexity increase more and more. Open testbed SMT2020 is used evaluations.","PeriodicalId":130513,"journal":{"name":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven Modeling for Production Dynamics\",\"authors\":\"S. Arima, Yu Sasaki, Sho Morie, Yuto Kataoka, Chending Mao, Jia Lin\",\"doi\":\"10.1109/ISSM55802.2022.10026908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduced the application of VAR-LiNGAM, and Backpropagation Neural Network with node2vec for feasible data-driven modeling of dynamics of semiconductor production system in which the scale and complexity increase more and more. Open testbed SMT2020 is used evaluations.\",\"PeriodicalId\":130513,\"journal\":{\"name\":\"2022 International Symposium on Semiconductor Manufacturing (ISSM)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Semiconductor Manufacturing (ISSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSM55802.2022.10026908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM55802.2022.10026908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This study introduced the application of VAR-LiNGAM, and Backpropagation Neural Network with node2vec for feasible data-driven modeling of dynamics of semiconductor production system in which the scale and complexity increase more and more. Open testbed SMT2020 is used evaluations.