用于低功耗应用的双腔起搏器的实现

Pavankumar Bikki, Yenduri Dhiraj, R.V.S Nivas Kumar
{"title":"用于低功耗应用的双腔起搏器的实现","authors":"Pavankumar Bikki, Yenduri Dhiraj, R.V.S Nivas Kumar","doi":"10.1109/ICECCT56650.2023.10179677","DOIUrl":null,"url":null,"abstract":"In this paper, a Dual Chamber Cardiac Pacemaker is implemented for various heartbeat ranges with the least amount of delay. For diseases like arrhythmia that are life-threatening, pacemakers are required. Maintaining the appropriate heart rate requires a minimum delay between sensing and pacing. The heart of the pacemaker, the timing control unit, the logic unit, and the sensing amplifier make up the pulse generator. The timing control unit and the logic unit make the decision to pace the heart based on the output of a sensing amplifier, thus achieving the demand pacing need. In addition, the VVI, DDD, and rate-responsive approaches of the pacemaker were designed using the VHDL structural approach, considering the pacemaker's timing cycles. The demand pacemaker functions in line with the heart rate of the arrhythmia-afflicted patient, and its range may vary between patients. For the proposed work, a beats-per-minute (bpm) range of 30 to 70 has been chosen. The outcome demonstrates that the proposed work is superior regarding latency, computational complexity, and cost.","PeriodicalId":180790,"journal":{"name":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of a Dual-Chamber Pacemaker for Low-Power Applications\",\"authors\":\"Pavankumar Bikki, Yenduri Dhiraj, R.V.S Nivas Kumar\",\"doi\":\"10.1109/ICECCT56650.2023.10179677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Dual Chamber Cardiac Pacemaker is implemented for various heartbeat ranges with the least amount of delay. For diseases like arrhythmia that are life-threatening, pacemakers are required. Maintaining the appropriate heart rate requires a minimum delay between sensing and pacing. The heart of the pacemaker, the timing control unit, the logic unit, and the sensing amplifier make up the pulse generator. The timing control unit and the logic unit make the decision to pace the heart based on the output of a sensing amplifier, thus achieving the demand pacing need. In addition, the VVI, DDD, and rate-responsive approaches of the pacemaker were designed using the VHDL structural approach, considering the pacemaker's timing cycles. The demand pacemaker functions in line with the heart rate of the arrhythmia-afflicted patient, and its range may vary between patients. For the proposed work, a beats-per-minute (bpm) range of 30 to 70 has been chosen. The outcome demonstrates that the proposed work is superior regarding latency, computational complexity, and cost.\",\"PeriodicalId\":180790,\"journal\":{\"name\":\"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCT56650.2023.10179677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT56650.2023.10179677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,实现了一种双腔心脏起搏器,用于各种心跳范围,并具有最小的延迟。对于像心律失常这样危及生命的疾病,起搏器是必需的。保持适当的心率需要最小的感知和起搏之间的延迟。起搏器的心脏、定时控制单元、逻辑单元和传感放大器组成脉冲发生器。定时控制单元和逻辑单元根据传感放大器的输出决定心脏起搏,从而实现起搏需求。此外,考虑起搏器的定时周期,采用VHDL结构方法设计了起搏器的VVI、DDD和心率响应方法。需求起搏器的功能与心律失常患者的心率一致,其范围可能因患者而异。对于提议的作品,每分钟的节拍(bpm)范围为30到70。结果表明,所提出的工作在延迟、计算复杂性和成本方面是优越的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of a Dual-Chamber Pacemaker for Low-Power Applications
In this paper, a Dual Chamber Cardiac Pacemaker is implemented for various heartbeat ranges with the least amount of delay. For diseases like arrhythmia that are life-threatening, pacemakers are required. Maintaining the appropriate heart rate requires a minimum delay between sensing and pacing. The heart of the pacemaker, the timing control unit, the logic unit, and the sensing amplifier make up the pulse generator. The timing control unit and the logic unit make the decision to pace the heart based on the output of a sensing amplifier, thus achieving the demand pacing need. In addition, the VVI, DDD, and rate-responsive approaches of the pacemaker were designed using the VHDL structural approach, considering the pacemaker's timing cycles. The demand pacemaker functions in line with the heart rate of the arrhythmia-afflicted patient, and its range may vary between patients. For the proposed work, a beats-per-minute (bpm) range of 30 to 70 has been chosen. The outcome demonstrates that the proposed work is superior regarding latency, computational complexity, and cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信