神经形态应用中电荷捕获突触器件性能指标的优化

Md. Hasan Raza Ansari, Nazek El‐Atab
{"title":"神经形态应用中电荷捕获突触器件性能指标的优化","authors":"Md. Hasan Raza Ansari, Nazek El‐Atab","doi":"10.1109/EDTM55494.2023.10103084","DOIUrl":null,"url":null,"abstract":"This work validates the synaptic behaviors (long-term potentiation (LTP) and depression (LTD)) of a junctionless transistor (JL) through the simulator. The synaptic transistor is an essential component for implementing artificial neural networks (ANN), which are called hardware neural networks (HNNs). This analysis shows optimization of nonlinearity and dynamic range of conductance values of LTP and LTD and is used for implementing the ANN with the MNIST dataset. The device achieves linear conductance (0.1) value and a higher dynamic range (~105) by optimizing the gate voltage. These results indicate that the JL device achieves 88.1 % image recognition accuracy.","PeriodicalId":418413,"journal":{"name":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Performance Metrics of Charge Trapping Synaptic Device for Neuromorphic Applications\",\"authors\":\"Md. Hasan Raza Ansari, Nazek El‐Atab\",\"doi\":\"10.1109/EDTM55494.2023.10103084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work validates the synaptic behaviors (long-term potentiation (LTP) and depression (LTD)) of a junctionless transistor (JL) through the simulator. The synaptic transistor is an essential component for implementing artificial neural networks (ANN), which are called hardware neural networks (HNNs). This analysis shows optimization of nonlinearity and dynamic range of conductance values of LTP and LTD and is used for implementing the ANN with the MNIST dataset. The device achieves linear conductance (0.1) value and a higher dynamic range (~105) by optimizing the gate voltage. These results indicate that the JL device achieves 88.1 % image recognition accuracy.\",\"PeriodicalId\":418413,\"journal\":{\"name\":\"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDTM55494.2023.10103084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM55494.2023.10103084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作通过模拟器验证了无结晶体管(JL)的突触行为(长期增强(LTP)和抑制(LTD))。突触晶体管是实现人工神经网络(ANN)的重要组成部分,也被称为硬件神经网络(HNNs)。该分析显示了LTP和LTD电导值的非线性和动态范围的优化,并用于使用MNIST数据集实现人工神经网络。该器件通过优化栅极电压实现线性电导(0.1)值和更高的动态范围(~105)。结果表明,JL装置的图像识别准确率达到了88.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Performance Metrics of Charge Trapping Synaptic Device for Neuromorphic Applications
This work validates the synaptic behaviors (long-term potentiation (LTP) and depression (LTD)) of a junctionless transistor (JL) through the simulator. The synaptic transistor is an essential component for implementing artificial neural networks (ANN), which are called hardware neural networks (HNNs). This analysis shows optimization of nonlinearity and dynamic range of conductance values of LTP and LTD and is used for implementing the ANN with the MNIST dataset. The device achieves linear conductance (0.1) value and a higher dynamic range (~105) by optimizing the gate voltage. These results indicate that the JL device achieves 88.1 % image recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信