基于改进子集采样算法的单单元物理仿真

Zhu Ming, Kang He, Zhu Hengjing, Yu Qingkui, Sun Yi, Tang Min
{"title":"基于改进子集采样算法的单单元物理仿真","authors":"Zhu Ming, Kang He, Zhu Hengjing, Yu Qingkui, Sun Yi, Tang Min","doi":"10.1109/CIRSYSSIM.2017.8023192","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved subset sampling algorithm based on machine learning. The physical simulation is executed on SEU cross section of SRAM, which can effectively simulate the real physical process in the single particle effect and reduce the simulation time. The simulation results are good agreement with the experimental results. The proposed method is validly verified.","PeriodicalId":342041,"journal":{"name":"2017 International Conference on Circuits, System and Simulation (ICCSS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Based on improved subset sampling algorithm for SEU physical simulation\",\"authors\":\"Zhu Ming, Kang He, Zhu Hengjing, Yu Qingkui, Sun Yi, Tang Min\",\"doi\":\"10.1109/CIRSYSSIM.2017.8023192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved subset sampling algorithm based on machine learning. The physical simulation is executed on SEU cross section of SRAM, which can effectively simulate the real physical process in the single particle effect and reduce the simulation time. The simulation results are good agreement with the experimental results. The proposed method is validly verified.\",\"PeriodicalId\":342041,\"journal\":{\"name\":\"2017 International Conference on Circuits, System and Simulation (ICCSS)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Circuits, System and Simulation (ICCSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRSYSSIM.2017.8023192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Circuits, System and Simulation (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRSYSSIM.2017.8023192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种改进的基于机器学习的子集采样算法。在SRAM的SEU截面上进行物理模拟,可以有效地模拟单粒子效应下的真实物理过程,减少模拟时间。仿真结果与实验结果吻合较好。该方法的有效性得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Based on improved subset sampling algorithm for SEU physical simulation
This paper proposes an improved subset sampling algorithm based on machine learning. The physical simulation is executed on SEU cross section of SRAM, which can effectively simulate the real physical process in the single particle effect and reduce the simulation time. The simulation results are good agreement with the experimental results. The proposed method is validly verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信