心脏MRI图像去噪技术的性能评价

M. A. Alattar, A. Motaal, N. Osman, A. Fahmy
{"title":"心脏MRI图像去噪技术的性能评价","authors":"M. A. Alattar, A. Motaal, N. Osman, A. Fahmy","doi":"10.1109/CIBEC.2008.4786055","DOIUrl":null,"url":null,"abstract":"Black-blood cardiac magnetic resonance imaging (MRI) plays an important role in diagnosing a number of heart diseases. The technique suffers inherently from low contrast-to-noise ratio between the myocardium and the blood. In this work, we examined the performance of different classification techniques that can be used. The three techniques successfully removed the noise with different performance. Numerical simulation has been done to quantitatively evaluate the performance of each technique.","PeriodicalId":319971,"journal":{"name":"2008 Cairo International Biomedical Engineering Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Performance Evaluation of Cardiac MRI Image Denoising Techniques\",\"authors\":\"M. A. Alattar, A. Motaal, N. Osman, A. Fahmy\",\"doi\":\"10.1109/CIBEC.2008.4786055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Black-blood cardiac magnetic resonance imaging (MRI) plays an important role in diagnosing a number of heart diseases. The technique suffers inherently from low contrast-to-noise ratio between the myocardium and the blood. In this work, we examined the performance of different classification techniques that can be used. The three techniques successfully removed the noise with different performance. Numerical simulation has been done to quantitatively evaluate the performance of each technique.\",\"PeriodicalId\":319971,\"journal\":{\"name\":\"2008 Cairo International Biomedical Engineering Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Cairo International Biomedical Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBEC.2008.4786055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Cairo International Biomedical Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBEC.2008.4786055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

黑血心脏磁共振成像(MRI)在诊断许多心脏疾病中起着重要作用。该技术固有的缺点是心肌和血液之间的噪比较低。在这项工作中,我们检查了可以使用的不同分类技术的性能。三种方法均能成功去除噪声,但效果不同。通过数值模拟对各技术的性能进行了定量评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of Cardiac MRI Image Denoising Techniques
Black-blood cardiac magnetic resonance imaging (MRI) plays an important role in diagnosing a number of heart diseases. The technique suffers inherently from low contrast-to-noise ratio between the myocardium and the blood. In this work, we examined the performance of different classification techniques that can be used. The three techniques successfully removed the noise with different performance. Numerical simulation has been done to quantitatively evaluate the performance of each technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信