MEMS惯性传感器封装的发展

R. Pryputniewicz, T. Marinis, J. W. Soucy, C. Furlong
{"title":"MEMS惯性传感器封装的发展","authors":"R. Pryputniewicz, T. Marinis, J. W. Soucy, C. Furlong","doi":"10.1109/PLANS.2004.1308974","DOIUrl":null,"url":null,"abstract":"Development of MEMS inertial sensors and their packaging for high performance applications requires a balanced approach combining analyses with testing and measurements. There are too many unknown parameters, e.g., material properties, process conditions, and components/package interfaces, to rely solely on analyses during the development. Recent advances in optoelectronic laser interferometric microscope (OELIM) methodology offer a considerable promise for effective testing and measurements to facilitate optimization of packaging for advanced MEMS inertial sensors. Using OELIM methodology, sub-micron deformations of MEMS components and MEMS packages are readily measured with nanometer accuracy and very high spatial resolution over a range of operating conditions. This greatly facilitates characterization of dynamic and thermomechanical behavior of MEMS components, MEMS packages, and other complex material structures. in this paper, the OELIM methodology, which allows remote, noninvasive, full-field-of-view measurements of deformations in near real-time, is presented and its viability for the development of packaging for MEMS inertial sensors is discussed. These discussions are illustrated by representative results that have been obtained relating to improving the packaging for MEMS inertial sensors.","PeriodicalId":102388,"journal":{"name":"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Development of packaging for MEMS inertial sensors\",\"authors\":\"R. Pryputniewicz, T. Marinis, J. W. Soucy, C. Furlong\",\"doi\":\"10.1109/PLANS.2004.1308974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of MEMS inertial sensors and their packaging for high performance applications requires a balanced approach combining analyses with testing and measurements. There are too many unknown parameters, e.g., material properties, process conditions, and components/package interfaces, to rely solely on analyses during the development. Recent advances in optoelectronic laser interferometric microscope (OELIM) methodology offer a considerable promise for effective testing and measurements to facilitate optimization of packaging for advanced MEMS inertial sensors. Using OELIM methodology, sub-micron deformations of MEMS components and MEMS packages are readily measured with nanometer accuracy and very high spatial resolution over a range of operating conditions. This greatly facilitates characterization of dynamic and thermomechanical behavior of MEMS components, MEMS packages, and other complex material structures. in this paper, the OELIM methodology, which allows remote, noninvasive, full-field-of-view measurements of deformations in near real-time, is presented and its viability for the development of packaging for MEMS inertial sensors is discussed. These discussions are illustrated by representative results that have been obtained relating to improving the packaging for MEMS inertial sensors.\",\"PeriodicalId\":102388,\"journal\":{\"name\":\"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2004.1308974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2004.1308974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

开发用于高性能应用的MEMS惯性传感器及其封装需要将分析与测试和测量相结合的平衡方法。有太多的未知参数,例如,材料特性、工艺条件和组件/封装接口,在开发过程中不能仅仅依靠分析。光电激光干涉显微镜(OELIM)方法的最新进展为有效的测试和测量提供了相当大的希望,以促进先进MEMS惯性传感器封装的优化。使用OELIM方法,MEMS组件和MEMS封装的亚微米变形可以在一系列操作条件下以纳米精度和非常高的空间分辨率轻松测量。这极大地促进了MEMS元件,MEMS封装和其他复杂材料结构的动态和热机械行为的表征。本文介绍了OELIM方法,该方法允许近实时的远程、无创、全视场测量变形,并讨论了其在MEMS惯性传感器封装开发中的可行性。这些讨论通过与改进MEMS惯性传感器封装有关的代表性结果来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of packaging for MEMS inertial sensors
Development of MEMS inertial sensors and their packaging for high performance applications requires a balanced approach combining analyses with testing and measurements. There are too many unknown parameters, e.g., material properties, process conditions, and components/package interfaces, to rely solely on analyses during the development. Recent advances in optoelectronic laser interferometric microscope (OELIM) methodology offer a considerable promise for effective testing and measurements to facilitate optimization of packaging for advanced MEMS inertial sensors. Using OELIM methodology, sub-micron deformations of MEMS components and MEMS packages are readily measured with nanometer accuracy and very high spatial resolution over a range of operating conditions. This greatly facilitates characterization of dynamic and thermomechanical behavior of MEMS components, MEMS packages, and other complex material structures. in this paper, the OELIM methodology, which allows remote, noninvasive, full-field-of-view measurements of deformations in near real-time, is presented and its viability for the development of packaging for MEMS inertial sensors is discussed. These discussions are illustrated by representative results that have been obtained relating to improving the packaging for MEMS inertial sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信