FExR。A-DCNN:基于深度卷积神经网络的注意机制面部情绪识别

Pratishtha Verma, Vasu Aggrawal, Jyoti Maggu
{"title":"FExR。A-DCNN:基于深度卷积神经网络的注意机制面部情绪识别","authors":"Pratishtha Verma, Vasu Aggrawal, Jyoti Maggu","doi":"10.1145/3549206.3549243","DOIUrl":null,"url":null,"abstract":"Human Facial Emotions play an important role in non-verbal communication between people. Automated Facial Recognition can have various impacts on our technology, helping us to better understand human behaviour, detect mental disorders, and synthesising facial expressions. Methods based on appearance and geometry are predominantly used, but fail to achieve high accuracy with limited data-sets. In this article we proposed various techniques using deep learning concepts of CNN to identify 7 key human emotions. We achieved 98% accuracy on CK+ data set having low sample count in 100 epochs, which confirms the superiority of the model in detecting and focusing on key global features for Facial Emotion Recognition.","PeriodicalId":199675,"journal":{"name":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FExR.A-DCNN: Facial Emotion Recognition with Attention mechanism using Deep Convolution Neural Network\",\"authors\":\"Pratishtha Verma, Vasu Aggrawal, Jyoti Maggu\",\"doi\":\"10.1145/3549206.3549243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human Facial Emotions play an important role in non-verbal communication between people. Automated Facial Recognition can have various impacts on our technology, helping us to better understand human behaviour, detect mental disorders, and synthesising facial expressions. Methods based on appearance and geometry are predominantly used, but fail to achieve high accuracy with limited data-sets. In this article we proposed various techniques using deep learning concepts of CNN to identify 7 key human emotions. We achieved 98% accuracy on CK+ data set having low sample count in 100 epochs, which confirms the superiority of the model in detecting and focusing on key global features for Facial Emotion Recognition.\",\"PeriodicalId\":199675,\"journal\":{\"name\":\"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3549206.3549243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549206.3549243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人类的面部情绪在人与人之间的非语言交流中起着重要的作用。自动面部识别可以对我们的技术产生各种影响,帮助我们更好地理解人类行为,检测精神障碍,以及合成面部表情。基于外观和几何的方法是常用的,但在有限的数据集下无法达到高精度。在本文中,我们提出了使用CNN的深度学习概念来识别7种关键的人类情感的各种技术。我们在100个epoch的低样本计数的CK+数据集上达到了98%的准确率,这证实了该模型在检测和关注面部情感识别的关键全局特征方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FExR.A-DCNN: Facial Emotion Recognition with Attention mechanism using Deep Convolution Neural Network
Human Facial Emotions play an important role in non-verbal communication between people. Automated Facial Recognition can have various impacts on our technology, helping us to better understand human behaviour, detect mental disorders, and synthesising facial expressions. Methods based on appearance and geometry are predominantly used, but fail to achieve high accuracy with limited data-sets. In this article we proposed various techniques using deep learning concepts of CNN to identify 7 key human emotions. We achieved 98% accuracy on CK+ data set having low sample count in 100 epochs, which confirms the superiority of the model in detecting and focusing on key global features for Facial Emotion Recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信