ESD植入在0.18-/spl mu/m的盐化CMOS技术中进行片上ESD保护,并考虑布局

M. Ker, Che-Hao Chuang
{"title":"ESD植入在0.18-/spl mu/m的盐化CMOS技术中进行片上ESD保护,并考虑布局","authors":"M. Ker, Che-Hao Chuang","doi":"10.1109/IPFA.2001.941461","DOIUrl":null,"url":null,"abstract":"ESD robustness of CMOS devices used in the I/O pad is a major reliability issue as the diffusion junction depth is reduced and LDD (lightly-doped drain)/salicide structures are generally used in sub-quarter-micron CMOS technology. In order to enhance ESD robustness, some ESD implantations have been reported for inclusion into the process flow to modify the device structures for ESD protection (Lee, 1997; Hsue and Ko, 1994; Lowrey and Chance, 1996; Yang, 2000). In this paper, the effectiveness of different ESD implantation solutions on NMOS and diode devices for ESD protection is investigated in a 0.18 /spl mu/m salicided bulk CMOS process. The second breakdown current (It2) of the fabricated devices is measured by the transmission line pulse generator (TLPG). The human-body-model (HBM) and the machine-model (MM) ESD levels of these devices are also measured and compared. The layout dependence of NMOS devices and diodes with different ESD implantations are also investigated.","PeriodicalId":297053,"journal":{"name":"Proceedings of the 2001 8th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2001 (Cat. No.01TH8548)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"ESD implantations in 0.18-/spl mu/m salicided CMOS technology for on-chip ESD protection with layout consideration\",\"authors\":\"M. Ker, Che-Hao Chuang\",\"doi\":\"10.1109/IPFA.2001.941461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ESD robustness of CMOS devices used in the I/O pad is a major reliability issue as the diffusion junction depth is reduced and LDD (lightly-doped drain)/salicide structures are generally used in sub-quarter-micron CMOS technology. In order to enhance ESD robustness, some ESD implantations have been reported for inclusion into the process flow to modify the device structures for ESD protection (Lee, 1997; Hsue and Ko, 1994; Lowrey and Chance, 1996; Yang, 2000). In this paper, the effectiveness of different ESD implantation solutions on NMOS and diode devices for ESD protection is investigated in a 0.18 /spl mu/m salicided bulk CMOS process. The second breakdown current (It2) of the fabricated devices is measured by the transmission line pulse generator (TLPG). The human-body-model (HBM) and the machine-model (MM) ESD levels of these devices are also measured and compared. The layout dependence of NMOS devices and diodes with different ESD implantations are also investigated.\",\"PeriodicalId\":297053,\"journal\":{\"name\":\"Proceedings of the 2001 8th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2001 (Cat. No.01TH8548)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2001 8th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2001 (Cat. No.01TH8548)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2001.941461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 8th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2001 (Cat. No.01TH8548)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2001.941461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

随着扩散结深度的降低和LDD(轻掺杂漏极)/盐化物结构通常用于亚四分之一微米CMOS技术,用于I/O焊片的CMOS器件的ESD稳稳性是一个主要的可靠性问题。为了增强ESD的稳健性,一些ESD植入物已经被报道纳入到工艺流程中,以修改ESD保护的器件结构(Lee, 1997;Hsue and Ko, 1994;Lowrey and Chance, 1996;杨,2000)。本文在0.18 /spl mu/m的盐化体CMOS工艺中,研究了不同的ESD注入溶液对NMOS和二极管器件的ESD保护效果。利用传输线脉冲发生器(TLPG)测量器件的二次击穿电流(It2)。测量并比较了这些器件的人体模型(HBM)和机器模型(MM) ESD水平。研究了不同ESD植入方式对NMOS器件和二极管布局的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESD implantations in 0.18-/spl mu/m salicided CMOS technology for on-chip ESD protection with layout consideration
ESD robustness of CMOS devices used in the I/O pad is a major reliability issue as the diffusion junction depth is reduced and LDD (lightly-doped drain)/salicide structures are generally used in sub-quarter-micron CMOS technology. In order to enhance ESD robustness, some ESD implantations have been reported for inclusion into the process flow to modify the device structures for ESD protection (Lee, 1997; Hsue and Ko, 1994; Lowrey and Chance, 1996; Yang, 2000). In this paper, the effectiveness of different ESD implantation solutions on NMOS and diode devices for ESD protection is investigated in a 0.18 /spl mu/m salicided bulk CMOS process. The second breakdown current (It2) of the fabricated devices is measured by the transmission line pulse generator (TLPG). The human-body-model (HBM) and the machine-model (MM) ESD levels of these devices are also measured and compared. The layout dependence of NMOS devices and diodes with different ESD implantations are also investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信