核心向量回归在电力设备状态维护中的应用

Junhua Qu, Wenjuan Wang, Chao Wei
{"title":"核心向量回归在电力设备状态维护中的应用","authors":"Junhua Qu, Wenjuan Wang, Chao Wei","doi":"10.1109/ICICIS.2011.141","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a forecasting model of electric power equipment statement assembled by core vector machines and particle swarm algorithm to improve the accuracy of electric equipment maintenance. The electric power equipment condition forecasting model improves parameter selection problems of nuclear vector regression by particle swarm algorithm, optimizes parameters of kernel function and reduces the artificial factors in the forecasting process, accordingly reduces the blindness in the process of training and improves the accuracy of the prediction, while core vector regression have the advantages of high precision, suitable for power equipment maintenance process.","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Core Vector Regression in Condition-Based Maintenance for Electric Power Equipments\",\"authors\":\"Junhua Qu, Wenjuan Wang, Chao Wei\",\"doi\":\"10.1109/ICICIS.2011.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a forecasting model of electric power equipment statement assembled by core vector machines and particle swarm algorithm to improve the accuracy of electric equipment maintenance. The electric power equipment condition forecasting model improves parameter selection problems of nuclear vector regression by particle swarm algorithm, optimizes parameters of kernel function and reduces the artificial factors in the forecasting process, accordingly reduces the blindness in the process of training and improves the accuracy of the prediction, while core vector regression have the advantages of high precision, suitable for power equipment maintenance process.\",\"PeriodicalId\":255291,\"journal\":{\"name\":\"2011 International Conference on Internet Computing and Information Services\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Internet Computing and Information Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIS.2011.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高电力设备维修的准确性,提出了一种基于核心向量机和粒子群算法组合的电力设备状态预测模型。该电力设备状态预测模型通过粒子群算法改进了核向量回归的参数选择问题,优化了核函数参数,减少了预测过程中的人为因素,从而减少了训练过程中的盲目性,提高了预测的准确性,同时核向量回归具有精度高的优点,适用于电力设备维护过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Core Vector Regression in Condition-Based Maintenance for Electric Power Equipments
In this paper, we propose a forecasting model of electric power equipment statement assembled by core vector machines and particle swarm algorithm to improve the accuracy of electric equipment maintenance. The electric power equipment condition forecasting model improves parameter selection problems of nuclear vector regression by particle swarm algorithm, optimizes parameters of kernel function and reduces the artificial factors in the forecasting process, accordingly reduces the blindness in the process of training and improves the accuracy of the prediction, while core vector regression have the advantages of high precision, suitable for power equipment maintenance process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信