基于混合蚁群算法的对地观测卫星调度

Haibo Wang, Minqiang Xu, Rixin Wang, Yuqing Li
{"title":"基于混合蚁群算法的对地观测卫星调度","authors":"Haibo Wang, Minqiang Xu, Rixin Wang, Yuqing Li","doi":"10.1109/AICI.2009.87","DOIUrl":null,"url":null,"abstract":"In order to solve the disadvantage of current ant colony optimization algorithm (ACO) which easily plunged into local optimal in dealing with Multi-Satellite Scheduling Problem (MuSSP), a hybrid ant colony optimization algorithm (HACO) is proposed. In this method, the ACO algorithm is served as a global search algorithm. According to the characteristics of the MuSSP, an adaptive memory algorithms is presented, which is used as the local search on the solution space in the hybrid ant colony optimization algorithm. The hybrid algorithm can improve the solution’s quality for MuSSP. Several cases showed that the HACO algorithm is feasibility. In addition, compared with ACO, the hybrid algorithm demonstrates that the global optimization ability is better.","PeriodicalId":289808,"journal":{"name":"2009 International Conference on Artificial Intelligence and Computational Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Scheduling Earth Observing Satellites with Hybrid Ant Colony Optimization Algorithm\",\"authors\":\"Haibo Wang, Minqiang Xu, Rixin Wang, Yuqing Li\",\"doi\":\"10.1109/AICI.2009.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the disadvantage of current ant colony optimization algorithm (ACO) which easily plunged into local optimal in dealing with Multi-Satellite Scheduling Problem (MuSSP), a hybrid ant colony optimization algorithm (HACO) is proposed. In this method, the ACO algorithm is served as a global search algorithm. According to the characteristics of the MuSSP, an adaptive memory algorithms is presented, which is used as the local search on the solution space in the hybrid ant colony optimization algorithm. The hybrid algorithm can improve the solution’s quality for MuSSP. Several cases showed that the HACO algorithm is feasibility. In addition, compared with ACO, the hybrid algorithm demonstrates that the global optimization ability is better.\",\"PeriodicalId\":289808,\"journal\":{\"name\":\"2009 International Conference on Artificial Intelligence and Computational Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Artificial Intelligence and Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICI.2009.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Artificial Intelligence and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICI.2009.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

为了解决现有蚁群优化算法在处理多卫星调度问题时容易陷入局部最优的缺点,提出了一种混合蚁群优化算法。该方法将蚁群算法作为全局搜索算法。根据蚁群优化算法的特点,提出了一种自适应记忆算法,并将其用于混合蚁群优化算法中解空间的局部搜索。混合算法可以提高求解质量。算例表明该算法是可行的。此外,与蚁群算法相比,混合算法具有更好的全局寻优能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling Earth Observing Satellites with Hybrid Ant Colony Optimization Algorithm
In order to solve the disadvantage of current ant colony optimization algorithm (ACO) which easily plunged into local optimal in dealing with Multi-Satellite Scheduling Problem (MuSSP), a hybrid ant colony optimization algorithm (HACO) is proposed. In this method, the ACO algorithm is served as a global search algorithm. According to the characteristics of the MuSSP, an adaptive memory algorithms is presented, which is used as the local search on the solution space in the hybrid ant colony optimization algorithm. The hybrid algorithm can improve the solution’s quality for MuSSP. Several cases showed that the HACO algorithm is feasibility. In addition, compared with ACO, the hybrid algorithm demonstrates that the global optimization ability is better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信