基于深度神经网络的铆钉接头制造缺陷视频图像检测与识别

O. S. Amosov, S. G. Amosova, I. O. Iochkov
{"title":"基于深度神经网络的铆钉接头制造缺陷视频图像检测与识别","authors":"O. S. Amosov, S. G. Amosova, I. O. Iochkov","doi":"10.1109/FarEastCon.2019.8934095","DOIUrl":null,"url":null,"abstract":"The issue of detecting and recognizing manufacturing defects in riveted joints using video content is presented. For the detection and classification of defects in riveted joints of aircraft, a computational method using deep neural networks has been developed. An illustrative example is given.","PeriodicalId":395247,"journal":{"name":"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detection and Recognition of Manufacturing Defects of Rivet Joints by their Video Images Using Deep Neural Networks\",\"authors\":\"O. S. Amosov, S. G. Amosova, I. O. Iochkov\",\"doi\":\"10.1109/FarEastCon.2019.8934095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The issue of detecting and recognizing manufacturing defects in riveted joints using video content is presented. For the detection and classification of defects in riveted joints of aircraft, a computational method using deep neural networks has been developed. An illustrative example is given.\",\"PeriodicalId\":395247,\"journal\":{\"name\":\"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FarEastCon.2019.8934095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FarEastCon.2019.8934095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了利用视频内容检测和识别铆接接头制造缺陷的问题。针对飞机铆接接头缺陷的检测与分类问题,提出了一种基于深度神经网络的计算方法。给出了一个说明性实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and Recognition of Manufacturing Defects of Rivet Joints by their Video Images Using Deep Neural Networks
The issue of detecting and recognizing manufacturing defects in riveted joints using video content is presented. For the detection and classification of defects in riveted joints of aircraft, a computational method using deep neural networks has been developed. An illustrative example is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信