预见性平衡控制

A. Rabbani, M. V. D. Panne, P. Kry
{"title":"预见性平衡控制","authors":"A. Rabbani, M. V. D. Panne, P. Kry","doi":"10.1145/2668064.2668083","DOIUrl":null,"url":null,"abstract":"A hallmark of many skilled motions is the anticipatory nature of the balance-related adjustments that happen in preparation for the expected evolution of forces during the motion. This can shape simulated and animated motions in subtle-but-important ways, help lend physical credence to the motion, and help signal the character's intent. In this paper, we investigate how center of mass reference trajectories (CMRTs) can be learned in order to achieve anticipatory balance control with a state-of-the-art reactive balancing system. This enables the design of physics-based motion simulations that involve fast pose transitions as well as force-based interactions with the environment, such as punches, pushes, and catching heavy objects. We demonstrate the results on planar human models, and show that CMRTs can generalize across parameterized versions of a motion. We illustrate that they are also effective at conveying a mismatch between a character's expectations and reality, e.g., thinking that an object is heavier than it is.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"654 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Anticipatory balance control\",\"authors\":\"A. Rabbani, M. V. D. Panne, P. Kry\",\"doi\":\"10.1145/2668064.2668083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hallmark of many skilled motions is the anticipatory nature of the balance-related adjustments that happen in preparation for the expected evolution of forces during the motion. This can shape simulated and animated motions in subtle-but-important ways, help lend physical credence to the motion, and help signal the character's intent. In this paper, we investigate how center of mass reference trajectories (CMRTs) can be learned in order to achieve anticipatory balance control with a state-of-the-art reactive balancing system. This enables the design of physics-based motion simulations that involve fast pose transitions as well as force-based interactions with the environment, such as punches, pushes, and catching heavy objects. We demonstrate the results on planar human models, and show that CMRTs can generalize across parameterized versions of a motion. We illustrate that they are also effective at conveying a mismatch between a character's expectations and reality, e.g., thinking that an object is heavier than it is.\",\"PeriodicalId\":138747,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Motion in Games\",\"volume\":\"654 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Motion in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2668064.2668083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Motion in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668064.2668083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

许多熟练动作的一个特点是,在准备动作过程中预期的力量演变时,与平衡相关的调整的预见性。这可以以微妙但重要的方式塑造模拟和动画动作,帮助增加动作的物理可信度,并帮助传达角色的意图。在本文中,我们研究了如何学习质心参考轨迹(CMRTs),以便通过最先进的反应平衡系统实现预期平衡控制。这使得基于物理的运动模拟的设计涉及快速姿势转换以及与环境的基于力的交互,如拳,推,抓重物。我们在平面人体模型上展示了结果,并表明CMRTs可以跨运动的参数化版本进行推广。我们说明了它们也能够有效地传达角色的期望和现实之间的不匹配,例如,认为一个物体比它更重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anticipatory balance control
A hallmark of many skilled motions is the anticipatory nature of the balance-related adjustments that happen in preparation for the expected evolution of forces during the motion. This can shape simulated and animated motions in subtle-but-important ways, help lend physical credence to the motion, and help signal the character's intent. In this paper, we investigate how center of mass reference trajectories (CMRTs) can be learned in order to achieve anticipatory balance control with a state-of-the-art reactive balancing system. This enables the design of physics-based motion simulations that involve fast pose transitions as well as force-based interactions with the environment, such as punches, pushes, and catching heavy objects. We demonstrate the results on planar human models, and show that CMRTs can generalize across parameterized versions of a motion. We illustrate that they are also effective at conveying a mismatch between a character's expectations and reality, e.g., thinking that an object is heavier than it is.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信