隐私保护数据集成研究综述

V. Shelake, N. Shekokar
{"title":"隐私保护数据集成研究综述","authors":"V. Shelake, N. Shekokar","doi":"10.1109/ICEECCOT.2017.8284559","DOIUrl":null,"url":null,"abstract":"Today there is necessity to integrate and share data from variety of data sources for mutual benefits and analysis purpose. Moreover, data integration involves matching of schema metadata and data across databases. Also, the databases contain personally identifying information and other sensitive information of individuals. Most of the privacy preserving data integration techniques are vulnerable to linking/re-identification attacks and some of them compromise accuracy while maintaining privacy of integrated data. Thus, protecting privacy of schemas or ontologies and data is a crucial requirement during data integration. This survey provides the various challenges, review of existing work and research directions for privacy preserving data integration.","PeriodicalId":439156,"journal":{"name":"2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A survey of privacy preserving data integration\",\"authors\":\"V. Shelake, N. Shekokar\",\"doi\":\"10.1109/ICEECCOT.2017.8284559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today there is necessity to integrate and share data from variety of data sources for mutual benefits and analysis purpose. Moreover, data integration involves matching of schema metadata and data across databases. Also, the databases contain personally identifying information and other sensitive information of individuals. Most of the privacy preserving data integration techniques are vulnerable to linking/re-identification attacks and some of them compromise accuracy while maintaining privacy of integrated data. Thus, protecting privacy of schemas or ontologies and data is a crucial requirement during data integration. This survey provides the various challenges, review of existing work and research directions for privacy preserving data integration.\",\"PeriodicalId\":439156,\"journal\":{\"name\":\"2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEECCOT.2017.8284559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEECCOT.2017.8284559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

今天,有必要集成和共享来自各种数据源的数据,以实现互利和分析目的。此外,数据集成涉及到跨数据库的模式元数据和数据的匹配。此外,数据库还包含个人身份信息和其他个人敏感信息。大多数保护隐私的数据集成技术容易受到链接/重新识别攻击,其中一些技术在保证集成数据隐私的同时损害了准确性。因此,在数据集成期间,保护模式或本体和数据的隐私性是一个至关重要的需求。本文对隐私保护数据集成面临的各种挑战、现有工作和研究方向进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey of privacy preserving data integration
Today there is necessity to integrate and share data from variety of data sources for mutual benefits and analysis purpose. Moreover, data integration involves matching of schema metadata and data across databases. Also, the databases contain personally identifying information and other sensitive information of individuals. Most of the privacy preserving data integration techniques are vulnerable to linking/re-identification attacks and some of them compromise accuracy while maintaining privacy of integrated data. Thus, protecting privacy of schemas or ontologies and data is a crucial requirement during data integration. This survey provides the various challenges, review of existing work and research directions for privacy preserving data integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信