{"title":"用于袖带记录神经信号的低功耗CMOS前端","authors":"J. Nielsen, E. Bruun","doi":"10.1109/NORCHP.2004.1423813","DOIUrl":null,"url":null,"abstract":"A low-power signal sensor front-end for biomedical applications is presented. The front-end consists of a preamplifier and an AID converter (ADC) for quantizing the sensor readout signal. The amplifier achieves low thermal noise by utilizing the weak inversion biasing region of MOSTs and low I/f-noise by chopper modulation. The resulting equivalent input referred noise is 7 nV/Hz, for a chopping frequency of 20 kHz. The implemented gain is 72.5 dB over a signal bandwidth of 4 kHz. The ADC is implemented as a third order ΣΔ-modulator employing a continuous-time (CT) loop filter. The loop filter integrators are implemented as Gm - C elements. The ADC signal-to-noise- and-distortion-ratio (SNDR) is measured to 62 dB, equivalent to 10 bits performance over a 4 kHz bandwidth and a dynamic range (OR) of 67 dB. The systems draws 353 μW of power from a modest supply voltage of 1.8 V.","PeriodicalId":208182,"journal":{"name":"Proceedings Norchip Conference, 2004.","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A low-power CMOS front-end for cuff-recorded nerve signals\",\"authors\":\"J. Nielsen, E. Bruun\",\"doi\":\"10.1109/NORCHP.2004.1423813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-power signal sensor front-end for biomedical applications is presented. The front-end consists of a preamplifier and an AID converter (ADC) for quantizing the sensor readout signal. The amplifier achieves low thermal noise by utilizing the weak inversion biasing region of MOSTs and low I/f-noise by chopper modulation. The resulting equivalent input referred noise is 7 nV/Hz, for a chopping frequency of 20 kHz. The implemented gain is 72.5 dB over a signal bandwidth of 4 kHz. The ADC is implemented as a third order ΣΔ-modulator employing a continuous-time (CT) loop filter. The loop filter integrators are implemented as Gm - C elements. The ADC signal-to-noise- and-distortion-ratio (SNDR) is measured to 62 dB, equivalent to 10 bits performance over a 4 kHz bandwidth and a dynamic range (OR) of 67 dB. The systems draws 353 μW of power from a modest supply voltage of 1.8 V.\",\"PeriodicalId\":208182,\"journal\":{\"name\":\"Proceedings Norchip Conference, 2004.\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Norchip Conference, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NORCHP.2004.1423813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Norchip Conference, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHP.2004.1423813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-power CMOS front-end for cuff-recorded nerve signals
A low-power signal sensor front-end for biomedical applications is presented. The front-end consists of a preamplifier and an AID converter (ADC) for quantizing the sensor readout signal. The amplifier achieves low thermal noise by utilizing the weak inversion biasing region of MOSTs and low I/f-noise by chopper modulation. The resulting equivalent input referred noise is 7 nV/Hz, for a chopping frequency of 20 kHz. The implemented gain is 72.5 dB over a signal bandwidth of 4 kHz. The ADC is implemented as a third order ΣΔ-modulator employing a continuous-time (CT) loop filter. The loop filter integrators are implemented as Gm - C elements. The ADC signal-to-noise- and-distortion-ratio (SNDR) is measured to 62 dB, equivalent to 10 bits performance over a 4 kHz bandwidth and a dynamic range (OR) of 67 dB. The systems draws 353 μW of power from a modest supply voltage of 1.8 V.