利用学习向量量化的阿拉伯文音素转录——《古兰经》文本快速转录的发展

K. Nahar, W. Al-Khatib, M. Elshafei, H. Al-Muhtaseb, M. Alghamdi
{"title":"利用学习向量量化的阿拉伯文音素转录——《古兰经》文本快速转录的发展","authors":"K. Nahar, W. Al-Khatib, M. Elshafei, H. Al-Muhtaseb, M. Alghamdi","doi":"10.1109/NOORIC.2013.85","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated the use of Learning Vector Quantization (LVQ) for phoneme transcription in Arabic speech recognition systems. We used Arabic speech corpus of TV news clips. Then, we employed feature vectors, which embed the frame neighboring correlation information between adjacent phonemes to replace the traditional trip hones models. Next, we generated the phonemes codebooks using the K-means splitting algorithm. After that, we trained the generated codebooks using the LVQ algorithm. When using the trained LVQ codebooks in utterance phoneme transcription of an open vocabulary test corpus, the phoneme recognition rate was 72% without the use of any added phoneme big rams or HMM models. The results of this research if improved could be used to serve the holy Quran text transcription without any phonemes big rams (phonemes language model). This would increase the speed of the Quranic speech to text transcription and creates the infrastructure of suitable high speed automatic identification system of Quranic sounds recognition and translation.","PeriodicalId":328341,"journal":{"name":"2013 Taibah University International Conference on Advances in Information Technology for the Holy Quran and Its Sciences","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Arabic Phonemes Transcription Using Learning Vector Quantization: \\\"Towards the Development of Fast Quranic Text Transcription\\\"\",\"authors\":\"K. Nahar, W. Al-Khatib, M. Elshafei, H. Al-Muhtaseb, M. Alghamdi\",\"doi\":\"10.1109/NOORIC.2013.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigated the use of Learning Vector Quantization (LVQ) for phoneme transcription in Arabic speech recognition systems. We used Arabic speech corpus of TV news clips. Then, we employed feature vectors, which embed the frame neighboring correlation information between adjacent phonemes to replace the traditional trip hones models. Next, we generated the phonemes codebooks using the K-means splitting algorithm. After that, we trained the generated codebooks using the LVQ algorithm. When using the trained LVQ codebooks in utterance phoneme transcription of an open vocabulary test corpus, the phoneme recognition rate was 72% without the use of any added phoneme big rams or HMM models. The results of this research if improved could be used to serve the holy Quran text transcription without any phonemes big rams (phonemes language model). This would increase the speed of the Quranic speech to text transcription and creates the infrastructure of suitable high speed automatic identification system of Quranic sounds recognition and translation.\",\"PeriodicalId\":328341,\"journal\":{\"name\":\"2013 Taibah University International Conference on Advances in Information Technology for the Holy Quran and Its Sciences\",\"volume\":\"272 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Taibah University International Conference on Advances in Information Technology for the Holy Quran and Its Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOORIC.2013.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Taibah University International Conference on Advances in Information Technology for the Holy Quran and Its Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOORIC.2013.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了在阿拉伯语语音识别系统中使用学习向量量化(LVQ)进行音素转录。我们使用了电视新闻片段的阿拉伯语语料库。然后,我们采用嵌入相邻音素之间的帧相邻相关信息的特征向量来取代传统的旅行特征模型。接下来,我们使用K-means分割算法生成音素码本。之后,我们使用LVQ算法训练生成的码本。将训练好的LVQ码本用于开放词汇测试语料库的语音音素转录时,在不使用任何添加音素大图或HMM模型的情况下,音素识别率为72%。本研究的结果如果得到改进,可用于无音素的《古兰经》文本转录(音素语言模型)。这将提高《古兰经》语音转文本的速度,并为适合的《古兰经》语音识别和翻译的高速自动识别系统奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arabic Phonemes Transcription Using Learning Vector Quantization: "Towards the Development of Fast Quranic Text Transcription"
In this paper, we investigated the use of Learning Vector Quantization (LVQ) for phoneme transcription in Arabic speech recognition systems. We used Arabic speech corpus of TV news clips. Then, we employed feature vectors, which embed the frame neighboring correlation information between adjacent phonemes to replace the traditional trip hones models. Next, we generated the phonemes codebooks using the K-means splitting algorithm. After that, we trained the generated codebooks using the LVQ algorithm. When using the trained LVQ codebooks in utterance phoneme transcription of an open vocabulary test corpus, the phoneme recognition rate was 72% without the use of any added phoneme big rams or HMM models. The results of this research if improved could be used to serve the holy Quran text transcription without any phonemes big rams (phonemes language model). This would increase the speed of the Quranic speech to text transcription and creates the infrastructure of suitable high speed automatic identification system of Quranic sounds recognition and translation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信