一种基于特征融合的人脸哈希算法

Z. Zeng, P. Watters
{"title":"一种基于特征融合的人脸哈希算法","authors":"Z. Zeng, P. Watters","doi":"10.1109/ECUMN.2007.2","DOIUrl":null,"url":null,"abstract":"We present a novel approach to generate cryptographic keys from biometric face data so that their privacy and biometric template can be protected by using helper data schema (HDS). Our method includes three components: feature extraction, feature discretization and key generation. During feature extraction stage, the global features (PCA-transformed) and local features (Gabor wavelet-transformed) of face images are used to produce newly fused feature sets as input feature vectors of generalized PCA in the unitary space so as to achieve superior performance. Then, in the feature discretization stage, a discretization process is introduced to generate a stable binary string from the fused feature vectors. Finally, the stable binary string is protected by helper data schema (HDS) and used as the input parameter of cryptographic key generating algorithms to produce the renewable biometric crypto key","PeriodicalId":202819,"journal":{"name":"Fourth European Conference on Universal Multiservice Networks (ECUMN'07)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A Novel Face Hashing Method with Feature Fusion for Biometric Cryptosystems\",\"authors\":\"Z. Zeng, P. Watters\",\"doi\":\"10.1109/ECUMN.2007.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to generate cryptographic keys from biometric face data so that their privacy and biometric template can be protected by using helper data schema (HDS). Our method includes three components: feature extraction, feature discretization and key generation. During feature extraction stage, the global features (PCA-transformed) and local features (Gabor wavelet-transformed) of face images are used to produce newly fused feature sets as input feature vectors of generalized PCA in the unitary space so as to achieve superior performance. Then, in the feature discretization stage, a discretization process is introduced to generate a stable binary string from the fused feature vectors. Finally, the stable binary string is protected by helper data schema (HDS) and used as the input parameter of cryptographic key generating algorithms to produce the renewable biometric crypto key\",\"PeriodicalId\":202819,\"journal\":{\"name\":\"Fourth European Conference on Universal Multiservice Networks (ECUMN'07)\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth European Conference on Universal Multiservice Networks (ECUMN'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECUMN.2007.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth European Conference on Universal Multiservice Networks (ECUMN'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECUMN.2007.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

我们提出了一种从生物特征面部数据生成加密密钥的新方法,通过使用辅助数据模式(HDS)来保护其隐私和生物特征模板。我们的方法包括三个部分:特征提取、特征离散和密钥生成。在特征提取阶段,利用人脸图像的全局特征(PCA变换)和局部特征(Gabor小波变换)产生新的融合特征集,作为广义PCA在酉空间的输入特征向量,从而获得较好的性能。然后,在特征离散化阶段,引入离散化过程,将融合后的特征向量生成稳定的二进制字符串;最后,利用辅助数据模式(HDS)对稳定二进制字符串进行保护,并将其作为密码密钥生成算法的输入参数,生成可更新的生物特征密码密钥
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Face Hashing Method with Feature Fusion for Biometric Cryptosystems
We present a novel approach to generate cryptographic keys from biometric face data so that their privacy and biometric template can be protected by using helper data schema (HDS). Our method includes three components: feature extraction, feature discretization and key generation. During feature extraction stage, the global features (PCA-transformed) and local features (Gabor wavelet-transformed) of face images are used to produce newly fused feature sets as input feature vectors of generalized PCA in the unitary space so as to achieve superior performance. Then, in the feature discretization stage, a discretization process is introduced to generate a stable binary string from the fused feature vectors. Finally, the stable binary string is protected by helper data schema (HDS) and used as the input parameter of cryptographic key generating algorithms to produce the renewable biometric crypto key
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信