片上毫米波无线互连性能评估及接收机前端设计

Xinmin Yu, S. Sah, B. Belzer, D. Heo
{"title":"片上毫米波无线互连性能评估及接收机前端设计","authors":"Xinmin Yu, S. Sah, B. Belzer, D. Heo","doi":"10.1109/GREENCOMP.2010.5598263","DOIUrl":null,"url":null,"abstract":"This paper illustrates the feasibility of designing a power-efficient millimeter-wave (mm-wave) transceiver for on-chip wireless communication networks. The performance of the on-chip wireless interconnect using mm-wave transceiver was evaluated through both theoretical analysis as well as system-level simulations in Simulink. To reduce the bit error rate degradation due to channel distortion, root-raised-cosine pulse shaping was performed. The simulation results were then used to define the design specifications of individual RF building blocks. Accordingly, a low-power receiver front-end, consisting of a three-stage wideband LNA, and a single-balanced down-conversion mixer, was also designed. The LNA was implemented using a feed-forward structure to extend the bandwidth at no cost in power consumption. The supply voltage of the mixer was reduced to 0.6 V by eliminating the transistor stack. Simulation results showed that the receiver has a 3-dB bandwidth of 19.2 GHz, a peak gain of 26.5 dB, a noise figure lower than 7.8 dB, and an input P1dB of −28 dBm, while consuming only 11.6 mW.","PeriodicalId":262148,"journal":{"name":"International Conference on Green Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Performance evaluation and receiver front-end design for on-chip millimeter-wave wireless interconnect\",\"authors\":\"Xinmin Yu, S. Sah, B. Belzer, D. Heo\",\"doi\":\"10.1109/GREENCOMP.2010.5598263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper illustrates the feasibility of designing a power-efficient millimeter-wave (mm-wave) transceiver for on-chip wireless communication networks. The performance of the on-chip wireless interconnect using mm-wave transceiver was evaluated through both theoretical analysis as well as system-level simulations in Simulink. To reduce the bit error rate degradation due to channel distortion, root-raised-cosine pulse shaping was performed. The simulation results were then used to define the design specifications of individual RF building blocks. Accordingly, a low-power receiver front-end, consisting of a three-stage wideband LNA, and a single-balanced down-conversion mixer, was also designed. The LNA was implemented using a feed-forward structure to extend the bandwidth at no cost in power consumption. The supply voltage of the mixer was reduced to 0.6 V by eliminating the transistor stack. Simulation results showed that the receiver has a 3-dB bandwidth of 19.2 GHz, a peak gain of 26.5 dB, a noise figure lower than 7.8 dB, and an input P1dB of −28 dBm, while consuming only 11.6 mW.\",\"PeriodicalId\":262148,\"journal\":{\"name\":\"International Conference on Green Computing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Green Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GREENCOMP.2010.5598263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Green Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENCOMP.2010.5598263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文阐述了为片上无线通信网络设计一种低功耗毫米波收发器的可行性。通过理论分析和Simulink系统级仿真,对采用毫米波收发器的片上无线互连的性能进行了评价。为了降低由于信道失真导致的误码率下降,采用了升根余弦脉冲整形。然后使用仿真结果来定义各个RF构建模块的设计规范。据此,设计了由三级宽带LNA和单平衡下变频混频器组成的低功耗接收机前端。LNA采用前馈结构实现,在不消耗功耗的情况下扩展带宽。通过消除晶体管堆叠,混合器的供电电压降低到0.6 V。仿真结果表明,该接收机的3db带宽为19.2 GHz,峰值增益为26.5 dB,噪声系数低于7.8 dB,输入P1dB为- 28 dBm,功耗仅为11.6 mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation and receiver front-end design for on-chip millimeter-wave wireless interconnect
This paper illustrates the feasibility of designing a power-efficient millimeter-wave (mm-wave) transceiver for on-chip wireless communication networks. The performance of the on-chip wireless interconnect using mm-wave transceiver was evaluated through both theoretical analysis as well as system-level simulations in Simulink. To reduce the bit error rate degradation due to channel distortion, root-raised-cosine pulse shaping was performed. The simulation results were then used to define the design specifications of individual RF building blocks. Accordingly, a low-power receiver front-end, consisting of a three-stage wideband LNA, and a single-balanced down-conversion mixer, was also designed. The LNA was implemented using a feed-forward structure to extend the bandwidth at no cost in power consumption. The supply voltage of the mixer was reduced to 0.6 V by eliminating the transistor stack. Simulation results showed that the receiver has a 3-dB bandwidth of 19.2 GHz, a peak gain of 26.5 dB, a noise figure lower than 7.8 dB, and an input P1dB of −28 dBm, while consuming only 11.6 mW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信