{"title":"光纤光子对产生的连续波理论","authors":"P. Voss, K. G. Koprulu, Premjeet Kumar","doi":"10.1117/12.512466","DOIUrl":null,"url":null,"abstract":"We derive a CW theory for optical-fiber photon-pair sources, including the effect of non-zero response time of the fiber's Kerr nonlinearity. We also include the effects of realistic transmission and detection losses. This theory predicts stronger photon-number correlations than seen experimentally with a pulsed pump, showing the need for development of a pulsed pump theory.","PeriodicalId":282161,"journal":{"name":"SPIE ITCom","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CW theory for optical fiber photon-pair generation\",\"authors\":\"P. Voss, K. G. Koprulu, Premjeet Kumar\",\"doi\":\"10.1117/12.512466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a CW theory for optical-fiber photon-pair sources, including the effect of non-zero response time of the fiber's Kerr nonlinearity. We also include the effects of realistic transmission and detection losses. This theory predicts stronger photon-number correlations than seen experimentally with a pulsed pump, showing the need for development of a pulsed pump theory.\",\"PeriodicalId\":282161,\"journal\":{\"name\":\"SPIE ITCom\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE ITCom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.512466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE ITCom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.512466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CW theory for optical fiber photon-pair generation
We derive a CW theory for optical-fiber photon-pair sources, including the effect of non-zero response time of the fiber's Kerr nonlinearity. We also include the effects of realistic transmission and detection losses. This theory predicts stronger photon-number correlations than seen experimentally with a pulsed pump, showing the need for development of a pulsed pump theory.