H. Schröder, S. Becker, Y. Lien, W. Riede, D. Wernham
{"title":"有机沉积物的荧光监测","authors":"H. Schröder, S. Becker, Y. Lien, W. Riede, D. Wernham","doi":"10.1117/12.752866","DOIUrl":null,"url":null,"abstract":"In this paper, we present the continued joint effort of ESA/ESTEC and DLR laser laboratories of improving the fluorescence monitoring technique towards a quantitative means for analysis of UV laser-induced deposit formation on optical samples in vacuum. In addition, a separate low power UV fluorescence excitation light source was implemented into the system allowing the investigation of laser-induced deposition occurring during irradiation of optics with IR and VIS light beams.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"84 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fluorescence monitoring of organic deposits\",\"authors\":\"H. Schröder, S. Becker, Y. Lien, W. Riede, D. Wernham\",\"doi\":\"10.1117/12.752866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the continued joint effort of ESA/ESTEC and DLR laser laboratories of improving the fluorescence monitoring technique towards a quantitative means for analysis of UV laser-induced deposit formation on optical samples in vacuum. In addition, a separate low power UV fluorescence excitation light source was implemented into the system allowing the investigation of laser-induced deposition occurring during irradiation of optics with IR and VIS light beams.\",\"PeriodicalId\":204978,\"journal\":{\"name\":\"SPIE Laser Damage\",\"volume\":\"84 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.752866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.752866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present the continued joint effort of ESA/ESTEC and DLR laser laboratories of improving the fluorescence monitoring technique towards a quantitative means for analysis of UV laser-induced deposit formation on optical samples in vacuum. In addition, a separate low power UV fluorescence excitation light source was implemented into the system allowing the investigation of laser-induced deposition occurring during irradiation of optics with IR and VIS light beams.