{"title":"基于双波段红外图像融合的弱小目标检测","authors":"Yuqiu Sun, J. Tian, Jian Liu","doi":"10.1109/ICIT.2006.372619","DOIUrl":null,"url":null,"abstract":"To infrared images, the contrast of target and background is low, dim small targets have no concrete shapes and their textures cannot be reliable predicted. The paper puts forward a novel algorithm to fuse mid-wave and long-wave infrared images and detect targets. Firstly, the source images are decomposed by wavelet transformation. In usual, targets in infrared images are man-made, and their fractal dimension is different comparing with natural background. In wavelet transformation domain high-frequency part, we calculate local fractal dimension and set up fusion rule to merge corresponding sub-images of two matching source images. In low-frequency, we extract local maximum gray level to fuse them. Then reconstruct image by wavelet inverse transformation and obtain fused result image. In fusion results, the contrast between targets and background has obvious changes. And targets can be detected using contrast thresholding. The experimental results show that the method using fractal dimension to fuse dualband infrared images, and then detect targets is superior to use mid-wave or long -wave infrared images detect targets alone.","PeriodicalId":103105,"journal":{"name":"2006 IEEE International Conference on Industrial Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dim Small Targets Detection Based on Dualband Infrared Image Fusion\",\"authors\":\"Yuqiu Sun, J. Tian, Jian Liu\",\"doi\":\"10.1109/ICIT.2006.372619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To infrared images, the contrast of target and background is low, dim small targets have no concrete shapes and their textures cannot be reliable predicted. The paper puts forward a novel algorithm to fuse mid-wave and long-wave infrared images and detect targets. Firstly, the source images are decomposed by wavelet transformation. In usual, targets in infrared images are man-made, and their fractal dimension is different comparing with natural background. In wavelet transformation domain high-frequency part, we calculate local fractal dimension and set up fusion rule to merge corresponding sub-images of two matching source images. In low-frequency, we extract local maximum gray level to fuse them. Then reconstruct image by wavelet inverse transformation and obtain fused result image. In fusion results, the contrast between targets and background has obvious changes. And targets can be detected using contrast thresholding. The experimental results show that the method using fractal dimension to fuse dualband infrared images, and then detect targets is superior to use mid-wave or long -wave infrared images detect targets alone.\",\"PeriodicalId\":103105,\"journal\":{\"name\":\"2006 IEEE International Conference on Industrial Technology\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Industrial Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2006.372619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2006.372619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dim Small Targets Detection Based on Dualband Infrared Image Fusion
To infrared images, the contrast of target and background is low, dim small targets have no concrete shapes and their textures cannot be reliable predicted. The paper puts forward a novel algorithm to fuse mid-wave and long-wave infrared images and detect targets. Firstly, the source images are decomposed by wavelet transformation. In usual, targets in infrared images are man-made, and their fractal dimension is different comparing with natural background. In wavelet transformation domain high-frequency part, we calculate local fractal dimension and set up fusion rule to merge corresponding sub-images of two matching source images. In low-frequency, we extract local maximum gray level to fuse them. Then reconstruct image by wavelet inverse transformation and obtain fused result image. In fusion results, the contrast between targets and background has obvious changes. And targets can be detected using contrast thresholding. The experimental results show that the method using fractal dimension to fuse dualband infrared images, and then detect targets is superior to use mid-wave or long -wave infrared images detect targets alone.