快速和鲁棒检测图像中的已知模式

L. Denis, A. Ferrari, D. Mary, L. Mugnier, É. Thiébaut
{"title":"快速和鲁棒检测图像中的已知模式","authors":"L. Denis, A. Ferrari, D. Mary, L. Mugnier, É. Thiébaut","doi":"10.1109/EUSIPCO.2016.7760640","DOIUrl":null,"url":null,"abstract":"Many image processing applications require to detect a known pattern buried under noise. While maximum correlation can be implemented efficiently using fast Fourier transforms, detection criteria that are robust to the presence of outliers are typically slower by several orders of magnitude. We derive the general expression of a robust detection criterion based on the theory of locally optimal detectors. The expression of the criterion is attractive because it offers a fast implementation based on correlations. Application of this criterion to Cauchy likelihood gives good detection performance in the presence of outliers, as shown in our numerical experiments. Special attention is given to proper normalization of the criterion in order to account for truncation at the image borders and noise with a non-stationary dispersion.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast and robust detection of a known pattern in an image\",\"authors\":\"L. Denis, A. Ferrari, D. Mary, L. Mugnier, É. Thiébaut\",\"doi\":\"10.1109/EUSIPCO.2016.7760640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many image processing applications require to detect a known pattern buried under noise. While maximum correlation can be implemented efficiently using fast Fourier transforms, detection criteria that are robust to the presence of outliers are typically slower by several orders of magnitude. We derive the general expression of a robust detection criterion based on the theory of locally optimal detectors. The expression of the criterion is attractive because it offers a fast implementation based on correlations. Application of this criterion to Cauchy likelihood gives good detection performance in the presence of outliers, as shown in our numerical experiments. Special attention is given to proper normalization of the criterion in order to account for truncation at the image borders and noise with a non-stationary dispersion.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

许多图像处理应用需要检测隐藏在噪声中的已知模式。虽然使用快速傅里叶变换可以有效地实现最大相关性,但对异常值的存在具有鲁棒性的检测标准通常要慢几个数量级。基于局部最优检测器理论,导出了鲁棒检测准则的一般表达式。标准的表达式很有吸引力,因为它提供了基于相关性的快速实现。数值实验表明,在存在异常值的情况下,将该准则应用于柯西似然具有良好的检测性能。特别注意标准的适当归一化,以便考虑图像边界的截断和非平稳色散的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and robust detection of a known pattern in an image
Many image processing applications require to detect a known pattern buried under noise. While maximum correlation can be implemented efficiently using fast Fourier transforms, detection criteria that are robust to the presence of outliers are typically slower by several orders of magnitude. We derive the general expression of a robust detection criterion based on the theory of locally optimal detectors. The expression of the criterion is attractive because it offers a fast implementation based on correlations. Application of this criterion to Cauchy likelihood gives good detection performance in the presence of outliers, as shown in our numerical experiments. Special attention is given to proper normalization of the criterion in order to account for truncation at the image borders and noise with a non-stationary dispersion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信