{"title":"用于诊断血红蛋白疾病的低成本、可批量生产的即时护理平台","authors":"M. N. Hasan, A. Fraiwan, J. Little, U. Gurkan","doi":"10.1109/HIC.2017.8227610","DOIUrl":null,"url":null,"abstract":"Sickle Cell Disease (SCD) is a genetically inherited hemoglobin disorder, which can be fatal if left undiagnosed and untreated. Geographically, the most SCD-prevalent regions have the lowest gross domestic product (GDP) and are therefore unable to implement costly, centralized SCD screening programs. In these regions, the early mortality is 50%–90% among children born with sickle cell anemia [1]. According to the World Health Organization (WHO), who passed a resolution naming SCD as a global public health problem in 2006 [2], 70% of these early mortality could be prevented by implementing low-cost SCD screening followed by cost-effective treatments [3]. To address this need, we developed HemeChip, a mass-producible, low-cost, microchip version of electrophoresis, able to detect and quantify hemoglobin type(s) from whole blood at the point of care (POC). The process is fast (<10 minutes), efficient, and can be performed by minimally trained personnel.","PeriodicalId":120815,"journal":{"name":"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A low-cost, mass-producible point-of-care platform for diagnosing hemoglobin disorders\",\"authors\":\"M. N. Hasan, A. Fraiwan, J. Little, U. Gurkan\",\"doi\":\"10.1109/HIC.2017.8227610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sickle Cell Disease (SCD) is a genetically inherited hemoglobin disorder, which can be fatal if left undiagnosed and untreated. Geographically, the most SCD-prevalent regions have the lowest gross domestic product (GDP) and are therefore unable to implement costly, centralized SCD screening programs. In these regions, the early mortality is 50%–90% among children born with sickle cell anemia [1]. According to the World Health Organization (WHO), who passed a resolution naming SCD as a global public health problem in 2006 [2], 70% of these early mortality could be prevented by implementing low-cost SCD screening followed by cost-effective treatments [3]. To address this need, we developed HemeChip, a mass-producible, low-cost, microchip version of electrophoresis, able to detect and quantify hemoglobin type(s) from whole blood at the point of care (POC). The process is fast (<10 minutes), efficient, and can be performed by minimally trained personnel.\",\"PeriodicalId\":120815,\"journal\":{\"name\":\"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIC.2017.8227610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIC.2017.8227610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-cost, mass-producible point-of-care platform for diagnosing hemoglobin disorders
Sickle Cell Disease (SCD) is a genetically inherited hemoglobin disorder, which can be fatal if left undiagnosed and untreated. Geographically, the most SCD-prevalent regions have the lowest gross domestic product (GDP) and are therefore unable to implement costly, centralized SCD screening programs. In these regions, the early mortality is 50%–90% among children born with sickle cell anemia [1]. According to the World Health Organization (WHO), who passed a resolution naming SCD as a global public health problem in 2006 [2], 70% of these early mortality could be prevented by implementing low-cost SCD screening followed by cost-effective treatments [3]. To address this need, we developed HemeChip, a mass-producible, low-cost, microchip version of electrophoresis, able to detect and quantify hemoglobin type(s) from whole blood at the point of care (POC). The process is fast (<10 minutes), efficient, and can be performed by minimally trained personnel.