{"title":"各向异性Sobolev类函数在幂对数尺度上的最优恢复","authors":"A.B. Utessov","doi":"10.32523/bulmathenu.2021/3.4","DOIUrl":null,"url":null,"abstract":"In this paper, within the framework of the C (N) D - formulation of the recovery problem, the problem of optimal recovery of functions from anisotropic Sobolev classes in a power-logarithmic scale in the metric $L^{q} \\, (2\\le q\\le \\infty )$ is solved. Namely, in the case when the values $l_{N}^{\\eqref{GrindEQ__1_}} (f),...,l_{N}^{(N)} (f)$ of linear functionals $l_{N}^{\\eqref{GrindEQ__1_}} ,...,l_{N}^{(N)} $ defined on the considered functional class are used as numerical information about a function, firstly, the exact order of the recovery error is established, and secondly, a specific computing unit $\\bar{\\varphi }_{N} \\left(\\bar{l}_{N}^{(1)} (f),...,\\bar{l}_{N}^{(N)} (f);\\, \\cdot \\right)$ is indicated that implements the established exact order.","PeriodicalId":225533,"journal":{"name":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal recovery of functions from anisotropic Sobolev classes on a power – logarithmic scale\",\"authors\":\"A.B. Utessov\",\"doi\":\"10.32523/bulmathenu.2021/3.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, within the framework of the C (N) D - formulation of the recovery problem, the problem of optimal recovery of functions from anisotropic Sobolev classes in a power-logarithmic scale in the metric $L^{q} \\\\, (2\\\\le q\\\\le \\\\infty )$ is solved. Namely, in the case when the values $l_{N}^{\\\\eqref{GrindEQ__1_}} (f),...,l_{N}^{(N)} (f)$ of linear functionals $l_{N}^{\\\\eqref{GrindEQ__1_}} ,...,l_{N}^{(N)} $ defined on the considered functional class are used as numerical information about a function, firstly, the exact order of the recovery error is established, and secondly, a specific computing unit $\\\\bar{\\\\varphi }_{N} \\\\left(\\\\bar{l}_{N}^{(1)} (f),...,\\\\bar{l}_{N}^{(N)} (f);\\\\, \\\\cdot \\\\right)$ is indicated that implements the established exact order.\",\"PeriodicalId\":225533,\"journal\":{\"name\":\"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/bulmathenu.2021/3.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/bulmathenu.2021/3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal recovery of functions from anisotropic Sobolev classes on a power – logarithmic scale
In this paper, within the framework of the C (N) D - formulation of the recovery problem, the problem of optimal recovery of functions from anisotropic Sobolev classes in a power-logarithmic scale in the metric $L^{q} \, (2\le q\le \infty )$ is solved. Namely, in the case when the values $l_{N}^{\eqref{GrindEQ__1_}} (f),...,l_{N}^{(N)} (f)$ of linear functionals $l_{N}^{\eqref{GrindEQ__1_}} ,...,l_{N}^{(N)} $ defined on the considered functional class are used as numerical information about a function, firstly, the exact order of the recovery error is established, and secondly, a specific computing unit $\bar{\varphi }_{N} \left(\bar{l}_{N}^{(1)} (f),...,\bar{l}_{N}^{(N)} (f);\, \cdot \right)$ is indicated that implements the established exact order.