HetGraph:基于矩阵的图形分析的高性能CPU-CGRA架构

Long Tan, Mingyu Yan, Xiaochun Ye, Dongrui Fan
{"title":"HetGraph:基于矩阵的图形分析的高性能CPU-CGRA架构","authors":"Long Tan, Mingyu Yan, Xiaochun Ye, Dongrui Fan","doi":"10.1145/3526241.3530382","DOIUrl":null,"url":null,"abstract":"In this paper, we explore graph analytics on a heterogeneous platform named HetGraph integrating with CPU and a flexible CGRA accelerator called RFU for matrix-based paradigm in this paper. RFU utilizes the lightweight pipeline without data hazards to support various generalized Sparse Matrix-Vector multiplications (SpMVs) of matrix-based graph analytics effectively. HetGraph utilizes the degree-aware workload distribution with vector-scanning sparsity removing scheme to alleviate the impact of highly sparse graph. Furthermore, we propose a heterogeneous work-stealing strategy to balance the workloads between CPU and RFU for HetGraph. To the best of our knowledge, HetGraph is the first heterogeneous CPU-CGRA architecture for matrix-based graph analytics. Overall, HetGraph achieves 9.42x, 2.45x speedup, and 9.80x, 7.70x energy savings on average compared to state-of-the-art (SOTA) CPU-based and GPGPU-based solutions respectively. Compared to the SOTA graph analytics accelerator, HetGraph also achieves 1.42x speedup and 1.06x less energy.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HetGraph: A High Performance CPU-CGRA Architecture for Matrix-based Graph Analytics\",\"authors\":\"Long Tan, Mingyu Yan, Xiaochun Ye, Dongrui Fan\",\"doi\":\"10.1145/3526241.3530382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore graph analytics on a heterogeneous platform named HetGraph integrating with CPU and a flexible CGRA accelerator called RFU for matrix-based paradigm in this paper. RFU utilizes the lightweight pipeline without data hazards to support various generalized Sparse Matrix-Vector multiplications (SpMVs) of matrix-based graph analytics effectively. HetGraph utilizes the degree-aware workload distribution with vector-scanning sparsity removing scheme to alleviate the impact of highly sparse graph. Furthermore, we propose a heterogeneous work-stealing strategy to balance the workloads between CPU and RFU for HetGraph. To the best of our knowledge, HetGraph is the first heterogeneous CPU-CGRA architecture for matrix-based graph analytics. Overall, HetGraph achieves 9.42x, 2.45x speedup, and 9.80x, 7.70x energy savings on average compared to state-of-the-art (SOTA) CPU-based and GPGPU-based solutions respectively. Compared to the SOTA graph analytics accelerator, HetGraph also achieves 1.42x speedup and 1.06x less energy.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探索了一个名为HetGraph的异构平台上的图形分析,该平台集成了CPU和一个名为RFU的灵活的CGRA加速器,用于基于矩阵的范式。RFU利用无数据危害的轻量级管道,有效地支持基于矩阵的图分析的各种广义稀疏矩阵向量乘法(spmv)。HetGraph利用程度感知的工作负载分配和矢量扫描稀疏度去除方案来减轻高度稀疏图的影响。此外,我们提出了一种异构工作窃取策略来平衡HetGraph的CPU和RFU之间的工作负载。据我们所知,HetGraph是第一个用于基于矩阵的图形分析的异构CPU-CGRA架构。总体而言,与最先进的(SOTA) cpu和基于gpgpu的解决方案相比,HetGraph实现了9.42倍、2.45倍的平均加速,9.80倍、7.70倍的平均节能。与SOTA图形分析加速器相比,HetGraph还实现了1.42倍的加速和1.06倍的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HetGraph: A High Performance CPU-CGRA Architecture for Matrix-based Graph Analytics
In this paper, we explore graph analytics on a heterogeneous platform named HetGraph integrating with CPU and a flexible CGRA accelerator called RFU for matrix-based paradigm in this paper. RFU utilizes the lightweight pipeline without data hazards to support various generalized Sparse Matrix-Vector multiplications (SpMVs) of matrix-based graph analytics effectively. HetGraph utilizes the degree-aware workload distribution with vector-scanning sparsity removing scheme to alleviate the impact of highly sparse graph. Furthermore, we propose a heterogeneous work-stealing strategy to balance the workloads between CPU and RFU for HetGraph. To the best of our knowledge, HetGraph is the first heterogeneous CPU-CGRA architecture for matrix-based graph analytics. Overall, HetGraph achieves 9.42x, 2.45x speedup, and 9.80x, 7.70x energy savings on average compared to state-of-the-art (SOTA) CPU-based and GPGPU-based solutions respectively. Compared to the SOTA graph analytics accelerator, HetGraph also achieves 1.42x speedup and 1.06x less energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信