基于高程图和概率感知模型的传感器放置黑盒优化

V. Akbarzadeh, Christian Gagné, M. Parizeau, M. Mostafavi
{"title":"基于高程图和概率感知模型的传感器放置黑盒优化","authors":"V. Akbarzadeh, Christian Gagné, M. Parizeau, M. Mostafavi","doi":"10.1109/ROSE.2011.6058544","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviours and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel framework to tackle the sensor placement problem using a probabilistic coverage and corresponding membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, L-BFGS, and CMA-ES.","PeriodicalId":361472,"journal":{"name":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Black-box optimization of sensor placement with elevation maps and probabilistic sensing models\",\"authors\":\"V. Akbarzadeh, Christian Gagné, M. Parizeau, M. Mostafavi\",\"doi\":\"10.1109/ROSE.2011.6058544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a framework for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviours and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel framework to tackle the sensor placement problem using a probabilistic coverage and corresponding membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, L-BFGS, and CMA-ES.\",\"PeriodicalId\":361472,\"journal\":{\"name\":\"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROSE.2011.6058544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2011.6058544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一个优化传感器布局的框架。传统的方案依赖于简单的传感器行为和环境因素。这些过度简化的后果是不现实的传感器性能模拟,因此,次优的传感器放置。在本文中,我们开发了一个新的框架来解决传感器放置问题,使用概率覆盖和相应的隶属函数来感知距离和感知角度,其中考虑了感知能力概率以及地形地形等关键环境因素。然后,我们实现了几种传感器放置优化方案,包括模拟退火,L-BFGS和CMA-ES。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black-box optimization of sensor placement with elevation maps and probabilistic sensing models
This paper proposes a framework for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviours and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel framework to tackle the sensor placement problem using a probabilistic coverage and corresponding membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, L-BFGS, and CMA-ES.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信