S. Ryu, S. Krishnaswami, M. Das, B. Hull, J. Richmond, B. Heath, A. Agarwal, J. Palmour, J. Scofield
{"title":"10.3 m/spl ω /-cm/sup 2/, 2 kV功率dmosfet在4H-SiC","authors":"S. Ryu, S. Krishnaswami, M. Das, B. Hull, J. Richmond, B. Heath, A. Agarwal, J. Palmour, J. Scofield","doi":"10.1109/ISPSD.2005.1488004","DOIUrl":null,"url":null,"abstract":"High voltage power DMOSFETs in 4H-SiC are presented in this paper. A 0.5 μm long MOS gate length was used to minimize the MOS channel resistance. The DMOSFETs were able to block 2 kV with gate shorted to the source. At room temperature, a specific on-resistance of 10.3 mΩ-cm was measured with a gate bias of 12 V. The specific on-resistance was reduced to 8 mΩ-cm with 17 V on the gate. At 150 C, the specific on-resistance increased to 14 mΩ-cm with a VGS of 12 V. The increase in drift layer resistance due to a decrease in bulk electron mobility was partly cancelled out by the negative shift in MOS threshold voltage. The device showed substantially lower parasitic capacitance values compared to a typical silicon power MOSFET with a comparable blocking voltage rating, which suggest that this device can offer significant improvement in switching performance over commercially available silicon power MOSFETs.","PeriodicalId":154808,"journal":{"name":"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"10.3 m/spl Omega/-cm/sup 2/, 2 kV Power DMOSFETs in 4H-SiC\",\"authors\":\"S. Ryu, S. Krishnaswami, M. Das, B. Hull, J. Richmond, B. Heath, A. Agarwal, J. Palmour, J. Scofield\",\"doi\":\"10.1109/ISPSD.2005.1488004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High voltage power DMOSFETs in 4H-SiC are presented in this paper. A 0.5 μm long MOS gate length was used to minimize the MOS channel resistance. The DMOSFETs were able to block 2 kV with gate shorted to the source. At room temperature, a specific on-resistance of 10.3 mΩ-cm was measured with a gate bias of 12 V. The specific on-resistance was reduced to 8 mΩ-cm with 17 V on the gate. At 150 C, the specific on-resistance increased to 14 mΩ-cm with a VGS of 12 V. The increase in drift layer resistance due to a decrease in bulk electron mobility was partly cancelled out by the negative shift in MOS threshold voltage. The device showed substantially lower parasitic capacitance values compared to a typical silicon power MOSFET with a comparable blocking voltage rating, which suggest that this device can offer significant improvement in switching performance over commercially available silicon power MOSFETs.\",\"PeriodicalId\":154808,\"journal\":{\"name\":\"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2005.1488004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2005.1488004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
10.3 m/spl Omega/-cm/sup 2/, 2 kV Power DMOSFETs in 4H-SiC
High voltage power DMOSFETs in 4H-SiC are presented in this paper. A 0.5 μm long MOS gate length was used to minimize the MOS channel resistance. The DMOSFETs were able to block 2 kV with gate shorted to the source. At room temperature, a specific on-resistance of 10.3 mΩ-cm was measured with a gate bias of 12 V. The specific on-resistance was reduced to 8 mΩ-cm with 17 V on the gate. At 150 C, the specific on-resistance increased to 14 mΩ-cm with a VGS of 12 V. The increase in drift layer resistance due to a decrease in bulk electron mobility was partly cancelled out by the negative shift in MOS threshold voltage. The device showed substantially lower parasitic capacitance values compared to a typical silicon power MOSFET with a comparable blocking voltage rating, which suggest that this device can offer significant improvement in switching performance over commercially available silicon power MOSFETs.