L. Latchooomun, T. Sockalingum, K. V. Poullé, R. King, K. Busawon, J. Barbot
{"title":"配电网压力驱动需求水压增压系统的设计","authors":"L. Latchooomun, T. Sockalingum, K. V. Poullé, R. King, K. Busawon, J. Barbot","doi":"10.1109/EFEA.2018.8617085","DOIUrl":null,"url":null,"abstract":"In pressure-driven demand of a water distribution network, booster pumps are so much sollicited online that they can cycle on and off several times in an hour. Coupling the pumps with a variable speed drive does not offer much benefit since at reduced speeds and flows, pressure increases, shifting the operation point from the best efficiency zone. Another alternative is to use a hydropneumatic tank which reacts to pressure changes and at the same time prevents pressure fluctuations online. In this paper, we design a new version of the hydropneumatic tank system to supply water at a steady flow using a centrifugal pump coupled with a variable speed drive in order to maintain a constant air pressure inside the tank. Results of simulation show that the system can achieve higher stability and energy efficiency compared to direct pumping without compromising customer demand.","PeriodicalId":447143,"journal":{"name":"2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of a Water Pressure Boosting System for Pressure-Driven Demand in a Distribution Network\",\"authors\":\"L. Latchooomun, T. Sockalingum, K. V. Poullé, R. King, K. Busawon, J. Barbot\",\"doi\":\"10.1109/EFEA.2018.8617085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In pressure-driven demand of a water distribution network, booster pumps are so much sollicited online that they can cycle on and off several times in an hour. Coupling the pumps with a variable speed drive does not offer much benefit since at reduced speeds and flows, pressure increases, shifting the operation point from the best efficiency zone. Another alternative is to use a hydropneumatic tank which reacts to pressure changes and at the same time prevents pressure fluctuations online. In this paper, we design a new version of the hydropneumatic tank system to supply water at a steady flow using a centrifugal pump coupled with a variable speed drive in order to maintain a constant air pressure inside the tank. Results of simulation show that the system can achieve higher stability and energy efficiency compared to direct pumping without compromising customer demand.\",\"PeriodicalId\":447143,\"journal\":{\"name\":\"2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EFEA.2018.8617085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFEA.2018.8617085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a Water Pressure Boosting System for Pressure-Driven Demand in a Distribution Network
In pressure-driven demand of a water distribution network, booster pumps are so much sollicited online that they can cycle on and off several times in an hour. Coupling the pumps with a variable speed drive does not offer much benefit since at reduced speeds and flows, pressure increases, shifting the operation point from the best efficiency zone. Another alternative is to use a hydropneumatic tank which reacts to pressure changes and at the same time prevents pressure fluctuations online. In this paper, we design a new version of the hydropneumatic tank system to supply water at a steady flow using a centrifugal pump coupled with a variable speed drive in order to maintain a constant air pressure inside the tank. Results of simulation show that the system can achieve higher stability and energy efficiency compared to direct pumping without compromising customer demand.