基于潜在投影的文档聚类检测

Dora Alvarez-Medina, H. Hidalgo-Silva
{"title":"基于潜在投影的文档聚类检测","authors":"Dora Alvarez-Medina, H. Hidalgo-Silva","doi":"10.1109/ICDIM.2009.5356765","DOIUrl":null,"url":null,"abstract":"Probabilistic text data modeling is usually considered with Bernoulli or multinomial event models. The main problem of text mining is the large amount of zero account in the matrix representation. Recently a document visualization technique incorporating the Zero Inflated Poisson model in the Generative Topographic Mapping algorithm has been proposed. This probabilistic model can be applied as a text document visualization tool. In this work, an algorithm for automatically extracting the clusters in the visualization results is presented. The combination of visualization-cluster extraction algorithms allows to obtain and evaluate document collections. Several results are presented for 20-Newsgroups and Reuters data.","PeriodicalId":300287,"journal":{"name":"2009 Fourth International Conference on Digital Information Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Document cluster detection on latent projections\",\"authors\":\"Dora Alvarez-Medina, H. Hidalgo-Silva\",\"doi\":\"10.1109/ICDIM.2009.5356765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic text data modeling is usually considered with Bernoulli or multinomial event models. The main problem of text mining is the large amount of zero account in the matrix representation. Recently a document visualization technique incorporating the Zero Inflated Poisson model in the Generative Topographic Mapping algorithm has been proposed. This probabilistic model can be applied as a text document visualization tool. In this work, an algorithm for automatically extracting the clusters in the visualization results is presented. The combination of visualization-cluster extraction algorithms allows to obtain and evaluate document collections. Several results are presented for 20-Newsgroups and Reuters data.\",\"PeriodicalId\":300287,\"journal\":{\"name\":\"2009 Fourth International Conference on Digital Information Management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International Conference on Digital Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2009.5356765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2009.5356765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

概率文本数据建模通常与伯努利或多项事件模型一起考虑。文本挖掘的主要问题是矩阵表示中存在大量的零账户。近年来提出了一种将零膨胀泊松模型引入生成式地形映射算法的文档可视化技术。该概率模型可作为文本文档可视化工具。本文提出了一种从可视化结果中自动提取聚类的算法。可视化聚类提取算法的组合允许获取和评估文档集合。本文给出了20个新闻组和路透社数据的几个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Document cluster detection on latent projections
Probabilistic text data modeling is usually considered with Bernoulli or multinomial event models. The main problem of text mining is the large amount of zero account in the matrix representation. Recently a document visualization technique incorporating the Zero Inflated Poisson model in the Generative Topographic Mapping algorithm has been proposed. This probabilistic model can be applied as a text document visualization tool. In this work, an algorithm for automatically extracting the clusters in the visualization results is presented. The combination of visualization-cluster extraction algorithms allows to obtain and evaluate document collections. Several results are presented for 20-Newsgroups and Reuters data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信