基于统计主体模型的交接交互原语

Carlos Cardoso, Alexandre Bernardino
{"title":"基于统计主体模型的交接交互原语","authors":"Carlos Cardoso, Alexandre Bernardino","doi":"10.1109/ICDL53763.2022.9962217","DOIUrl":null,"url":null,"abstract":"When humans perform object handovers, the non-verbal communication implicit in the movement of the interaction partners mutually communicates information on how the handover will proceed. This intention communication allows both subjects to understand where the transfer of the object will occur, the speed of the gesture, and how careful the receiver of the object must be. In human-robot interaction, it is also desirable that the robot can read and transmit the same information. Bayesian Interaction Primitives (BIP) can be used to learn natural handover interactions from demonstrations performed between humans. In this work, we explore BIPs for handover interactions and compare a state representation obtained directly from a motion capture system with a representation using a statistical body pose model fitted to the motion capture data.","PeriodicalId":274171,"journal":{"name":"2022 IEEE International Conference on Development and Learning (ICDL)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting a Statistical Body Model for Handover Interaction Primitives\",\"authors\":\"Carlos Cardoso, Alexandre Bernardino\",\"doi\":\"10.1109/ICDL53763.2022.9962217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When humans perform object handovers, the non-verbal communication implicit in the movement of the interaction partners mutually communicates information on how the handover will proceed. This intention communication allows both subjects to understand where the transfer of the object will occur, the speed of the gesture, and how careful the receiver of the object must be. In human-robot interaction, it is also desirable that the robot can read and transmit the same information. Bayesian Interaction Primitives (BIP) can be used to learn natural handover interactions from demonstrations performed between humans. In this work, we explore BIPs for handover interactions and compare a state representation obtained directly from a motion capture system with a representation using a statistical body pose model fitted to the motion capture data.\",\"PeriodicalId\":274171,\"journal\":{\"name\":\"2022 IEEE International Conference on Development and Learning (ICDL)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Development and Learning (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL53763.2022.9962217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Development and Learning (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL53763.2022.9962217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当人类进行对象移交时,隐含在交互伙伴运动中的非语言交流相互传达了如何进行移交的信息。这种意图交流使双方都能理解物体的转移将发生在哪里,手势的速度,以及物体的接收者必须有多小心。在人机交互中,也希望机器人能够读取和传输相同的信息。贝叶斯交互原语(BIP)可用于从人类之间的演示中学习自然的移交交互。在这项工作中,我们探索了切换交互的bip,并将直接从动作捕捉系统获得的状态表示与使用拟合动作捕捉数据的统计身体姿态模型的表示进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting a Statistical Body Model for Handover Interaction Primitives
When humans perform object handovers, the non-verbal communication implicit in the movement of the interaction partners mutually communicates information on how the handover will proceed. This intention communication allows both subjects to understand where the transfer of the object will occur, the speed of the gesture, and how careful the receiver of the object must be. In human-robot interaction, it is also desirable that the robot can read and transmit the same information. Bayesian Interaction Primitives (BIP) can be used to learn natural handover interactions from demonstrations performed between humans. In this work, we explore BIPs for handover interactions and compare a state representation obtained directly from a motion capture system with a representation using a statistical body pose model fitted to the motion capture data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信