二维楔体马赫数无关原理研究

S. Shivashree
{"title":"二维楔体马赫数无关原理研究","authors":"S. Shivashree","doi":"10.1109/punecon52575.2021.9686488","DOIUrl":null,"url":null,"abstract":"Oswatitsch's independence principle is of primary importance in aerothermodynamics, particularly for high-speed vehicles. In accordance with this principle, force coefficients measured experimentally for a certain design at Mach 10 (e.g.) hold up under all higher Mach numbers, i.e., Mach> 10, provided the flow is inviscid and perfect gas. In any case, once the surface temperature exceeds a critical point, the independence principle begins to lose its validity. In this paper, a slender 2D wedge is analyzed numerically and theoretically for a range of Mach number $\\mathbf{1 < \\mathbf{M}_{\\infty} < 20}$ for specific aerodynamic properties, namely, pressure coefficient $\\boldsymbol{\\mathrm{C}_{\\mathrm{P}}}$, wave-drag coefficients $\\boldsymbol{\\mathrm{C}_{\\mathrm{D}}}$, and shock wave angle, all of which are vital for designing hypersonic cruise and re-entry vehicles. The independence principle for the two-dimensional wedge is numerically assessed through FLU ENT in the context of an adiabatic wall boundary condition. The numerical results of $\\boldsymbol{\\mathrm{C}_{\\mathrm{P}}, \\mathrm{C}_{\\mathrm{D}}}$, and shock wave angle computed under different Mach numbers are in relatively good agreement with the theoretical results. Also, for the slender wedge model considered here, at higher Mach numbers, its Mach angle's magnitude corresponds to the maximum deflection angle, which the flow undergoes at the body surface.","PeriodicalId":154406,"journal":{"name":"2021 IEEE Pune Section International Conference (PuneCon)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Mach Number Independence Principle for a Two-Dimensional Wedge\",\"authors\":\"S. Shivashree\",\"doi\":\"10.1109/punecon52575.2021.9686488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oswatitsch's independence principle is of primary importance in aerothermodynamics, particularly for high-speed vehicles. In accordance with this principle, force coefficients measured experimentally for a certain design at Mach 10 (e.g.) hold up under all higher Mach numbers, i.e., Mach> 10, provided the flow is inviscid and perfect gas. In any case, once the surface temperature exceeds a critical point, the independence principle begins to lose its validity. In this paper, a slender 2D wedge is analyzed numerically and theoretically for a range of Mach number $\\\\mathbf{1 < \\\\mathbf{M}_{\\\\infty} < 20}$ for specific aerodynamic properties, namely, pressure coefficient $\\\\boldsymbol{\\\\mathrm{C}_{\\\\mathrm{P}}}$, wave-drag coefficients $\\\\boldsymbol{\\\\mathrm{C}_{\\\\mathrm{D}}}$, and shock wave angle, all of which are vital for designing hypersonic cruise and re-entry vehicles. The independence principle for the two-dimensional wedge is numerically assessed through FLU ENT in the context of an adiabatic wall boundary condition. The numerical results of $\\\\boldsymbol{\\\\mathrm{C}_{\\\\mathrm{P}}, \\\\mathrm{C}_{\\\\mathrm{D}}}$, and shock wave angle computed under different Mach numbers are in relatively good agreement with the theoretical results. Also, for the slender wedge model considered here, at higher Mach numbers, its Mach angle's magnitude corresponds to the maximum deflection angle, which the flow undergoes at the body surface.\",\"PeriodicalId\":154406,\"journal\":{\"name\":\"2021 IEEE Pune Section International Conference (PuneCon)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Pune Section International Conference (PuneCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/punecon52575.2021.9686488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Pune Section International Conference (PuneCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/punecon52575.2021.9686488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

奥斯瓦蒂奇独立原理在空气热力学中是非常重要的,特别是对于高速车辆。根据这一原理,在马赫数为10(例如)时,对某一设计进行的力系数实验测量在所有更高马赫数下都成立,即马赫数> 10,前提是流动是无粘性的完美气体。在任何情况下,一旦表面温度超过一个临界点,独立原理就开始失去其有效性。本文对一个细长的二维楔形飞行器在马赫数$\mathbf{1 < \mathbf{M}_{\infty} < 20}$范围内的具体气动特性,即压力系数$\boldsymbol{\mathrm{C}_{\mathrm{P}}}$、波阻系数$\boldsymbol{\mathrm{C}_{\mathrm{D}}}$和冲击波角进行了数值和理论分析,这些特性对高超声速巡航和再入飞行器的设计至关重要。在绝热壁边界条件下,利用fluent对二维楔体的独立原理进行了数值计算。$\boldsymbol{\mathrm{C}_{\mathrm{P}}, \mathrm{C}_{\mathrm{D}}}$的数值计算结果和不同马赫数下的激波角计算结果与理论结果吻合较好。同样,对于本文所考虑的细长楔形模型,在马赫数较高时,其马赫角的大小对应于气流在机体表面所经历的最大偏转角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Mach Number Independence Principle for a Two-Dimensional Wedge
Oswatitsch's independence principle is of primary importance in aerothermodynamics, particularly for high-speed vehicles. In accordance with this principle, force coefficients measured experimentally for a certain design at Mach 10 (e.g.) hold up under all higher Mach numbers, i.e., Mach> 10, provided the flow is inviscid and perfect gas. In any case, once the surface temperature exceeds a critical point, the independence principle begins to lose its validity. In this paper, a slender 2D wedge is analyzed numerically and theoretically for a range of Mach number $\mathbf{1 < \mathbf{M}_{\infty} < 20}$ for specific aerodynamic properties, namely, pressure coefficient $\boldsymbol{\mathrm{C}_{\mathrm{P}}}$, wave-drag coefficients $\boldsymbol{\mathrm{C}_{\mathrm{D}}}$, and shock wave angle, all of which are vital for designing hypersonic cruise and re-entry vehicles. The independence principle for the two-dimensional wedge is numerically assessed through FLU ENT in the context of an adiabatic wall boundary condition. The numerical results of $\boldsymbol{\mathrm{C}_{\mathrm{P}}, \mathrm{C}_{\mathrm{D}}}$, and shock wave angle computed under different Mach numbers are in relatively good agreement with the theoretical results. Also, for the slender wedge model considered here, at higher Mach numbers, its Mach angle's magnitude corresponds to the maximum deflection angle, which the flow undergoes at the body surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信