Z. Ren, R. Venugopal, S. Datta, Mark S. Lundstrom, D. Jovanovic, J. Fossum
{"title":"弹道纳米晶体管:模拟研究","authors":"Z. Ren, R. Venugopal, S. Datta, Mark S. Lundstrom, D. Jovanovic, J. Fossum","doi":"10.1109/IEDM.2000.904418","DOIUrl":null,"url":null,"abstract":"The device design and physics issues of ballistic double-gate (DG) MOSFETs are explored using semiclassical and quantum simulations. We find that tunneling from source-to-drain increases the off-current but decreases the on-current for an L=10 nm model transistor. We also show that source-to-drain tunneling sets a scaling limit at less than about L=10 nm, but to achieve this limit, ultra-thin bodies are necessary to control classical two-dimensional short-channel effects. Finally, we show that to meet performance targets at low voltages, near-ballistic performance is necessary, and we estimate the mobility that will be required for these ultra-thin silicon films.","PeriodicalId":276800,"journal":{"name":"International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"The ballistic nanotransistor: a simulation study\",\"authors\":\"Z. Ren, R. Venugopal, S. Datta, Mark S. Lundstrom, D. Jovanovic, J. Fossum\",\"doi\":\"10.1109/IEDM.2000.904418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The device design and physics issues of ballistic double-gate (DG) MOSFETs are explored using semiclassical and quantum simulations. We find that tunneling from source-to-drain increases the off-current but decreases the on-current for an L=10 nm model transistor. We also show that source-to-drain tunneling sets a scaling limit at less than about L=10 nm, but to achieve this limit, ultra-thin bodies are necessary to control classical two-dimensional short-channel effects. Finally, we show that to meet performance targets at low voltages, near-ballistic performance is necessary, and we estimate the mobility that will be required for these ultra-thin silicon films.\",\"PeriodicalId\":276800,\"journal\":{\"name\":\"International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2000.904418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2000.904418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The device design and physics issues of ballistic double-gate (DG) MOSFETs are explored using semiclassical and quantum simulations. We find that tunneling from source-to-drain increases the off-current but decreases the on-current for an L=10 nm model transistor. We also show that source-to-drain tunneling sets a scaling limit at less than about L=10 nm, but to achieve this limit, ultra-thin bodies are necessary to control classical two-dimensional short-channel effects. Finally, we show that to meet performance targets at low voltages, near-ballistic performance is necessary, and we estimate the mobility that will be required for these ultra-thin silicon films.