投资几何问题

D. Obradovic, L. Mishra
{"title":"投资几何问题","authors":"D. Obradovic, L. Mishra","doi":"10.54646/bijscit.002","DOIUrl":null,"url":null,"abstract":"Solving geometric problems of special importance is the transformation of a plane called inversion. When solving geometric problems, the transformation of the plane called inversion is of special importance. An inversion is a mapping of a plane that a set of directions and a circle maps to the same set, and in doing so it can map a line either to a line or to a circle, and it can also map a circle to either a line or a circle.","PeriodicalId":112029,"journal":{"name":"BOHR International Journal of Smart Computing and Information Technology","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"For Investment Geometric Problems\",\"authors\":\"D. Obradovic, L. Mishra\",\"doi\":\"10.54646/bijscit.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving geometric problems of special importance is the transformation of a plane called inversion. When solving geometric problems, the transformation of the plane called inversion is of special importance. An inversion is a mapping of a plane that a set of directions and a circle maps to the same set, and in doing so it can map a line either to a line or to a circle, and it can also map a circle to either a line or a circle.\",\"PeriodicalId\":112029,\"journal\":{\"name\":\"BOHR International Journal of Smart Computing and Information Technology\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BOHR International Journal of Smart Computing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54646/bijscit.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOHR International Journal of Smart Computing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54646/bijscit.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解决特别重要的几何问题是平面的变换,称为反演。在求解几何问题时,平面的变换称为反演,具有特殊的重要性。反转是平面的映射,一组方向和一个圆映射到同一个集合,这样一来,它可以将一条线映射到一条线或一个圆,也可以将一个圆映射到一条线或一个圆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
For Investment Geometric Problems
Solving geometric problems of special importance is the transformation of a plane called inversion. When solving geometric problems, the transformation of the plane called inversion is of special importance. An inversion is a mapping of a plane that a set of directions and a circle maps to the same set, and in doing so it can map a line either to a line or to a circle, and it can also map a circle to either a line or a circle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信