{"title":"用改进的残差幂级数法求解五阶和六阶线性和非线性边值问题","authors":"Muhammad Gul, Hamid Khan, Abid Ali","doi":"10.48185/jmam.v3i1.386","DOIUrl":null,"url":null,"abstract":"In this paper we solve some fifth and sixth order boundary value problems (BVPs) by the improved residual power series method (IRPSM). IRPSM is a method that extends the residual power series method (RPSM) to (BVPs) without requiring exact solution. The presented method is capable to handle both linear and nonlinear boundary value problems (BVPs) effectively. The solutions provided by IRPSM are compared with the actual solution and with the existing solutions. The results demonstrate that the approach is extremely accurate and dependable.","PeriodicalId":393347,"journal":{"name":"Journal of Mathematical Analysis and Modeling","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The solution of fifth and sixth order linear and non linear boundary value problems by the Improved Residual Power Series Method\",\"authors\":\"Muhammad Gul, Hamid Khan, Abid Ali\",\"doi\":\"10.48185/jmam.v3i1.386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we solve some fifth and sixth order boundary value problems (BVPs) by the improved residual power series method (IRPSM). IRPSM is a method that extends the residual power series method (RPSM) to (BVPs) without requiring exact solution. The presented method is capable to handle both linear and nonlinear boundary value problems (BVPs) effectively. The solutions provided by IRPSM are compared with the actual solution and with the existing solutions. The results demonstrate that the approach is extremely accurate and dependable.\",\"PeriodicalId\":393347,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Modeling\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48185/jmam.v3i1.386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48185/jmam.v3i1.386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The solution of fifth and sixth order linear and non linear boundary value problems by the Improved Residual Power Series Method
In this paper we solve some fifth and sixth order boundary value problems (BVPs) by the improved residual power series method (IRPSM). IRPSM is a method that extends the residual power series method (RPSM) to (BVPs) without requiring exact solution. The presented method is capable to handle both linear and nonlinear boundary value problems (BVPs) effectively. The solutions provided by IRPSM are compared with the actual solution and with the existing solutions. The results demonstrate that the approach is extremely accurate and dependable.