关联规则在冠心病数据中的相关性研究及应用

Z. Lin, Weiguo Yi, Mingyu Lu, Zhi Liu, Hao Xu
{"title":"关联规则在冠心病数据中的相关性研究及应用","authors":"Z. Lin, Weiguo Yi, Mingyu Lu, Zhi Liu, Hao Xu","doi":"10.1109/SoCPaR.2009.39","DOIUrl":null,"url":null,"abstract":"The mining association rule is an important research field in data mining. The mining association rule usually adopts this model: support, confidence, interestingness. But this model can’t measure the correlative degree between the antecedent and the consequent of the rule by ration. So we proposed a new mining model of association rules: support, coincidence, interestingness and analyzed the meaning of coincidence by instance. At last, we used this model in the data about coronary heart disease and obtained a lot of meaningful rules.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Correlation Research of Association Rules and Application in the Data about Coronary Heart Disease\",\"authors\":\"Z. Lin, Weiguo Yi, Mingyu Lu, Zhi Liu, Hao Xu\",\"doi\":\"10.1109/SoCPaR.2009.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mining association rule is an important research field in data mining. The mining association rule usually adopts this model: support, confidence, interestingness. But this model can’t measure the correlative degree between the antecedent and the consequent of the rule by ration. So we proposed a new mining model of association rules: support, coincidence, interestingness and analyzed the meaning of coincidence by instance. At last, we used this model in the data about coronary heart disease and obtained a lot of meaningful rules.\",\"PeriodicalId\":284743,\"journal\":{\"name\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"volume\":\"231 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SoCPaR.2009.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

关联规则挖掘是数据挖掘中的一个重要研究领域。挖掘关联规则通常采用支持度、置信度、兴趣度模型。但该模型不能衡量规则的前因式与后因式的关联度。为此,我们提出了一种新的关联规则挖掘模型:支持度、巧合度、兴趣度,并通过实例分析了巧合的含义。最后,将该模型应用于冠心病数据中,得到了许多有意义的规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation Research of Association Rules and Application in the Data about Coronary Heart Disease
The mining association rule is an important research field in data mining. The mining association rule usually adopts this model: support, confidence, interestingness. But this model can’t measure the correlative degree between the antecedent and the consequent of the rule by ration. So we proposed a new mining model of association rules: support, coincidence, interestingness and analyzed the meaning of coincidence by instance. At last, we used this model in the data about coronary heart disease and obtained a lot of meaningful rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信