圆形阵列合成的本征空间方法

A.-E.-F.A. Abou-Hashem, S. El-Khamy
{"title":"圆形阵列合成的本征空间方法","authors":"A.-E.-F.A. Abou-Hashem, S. El-Khamy","doi":"10.1109/NRSC.1999.760880","DOIUrl":null,"url":null,"abstract":"An eigen space non-iterative technique for the synthesis of both linear and circular arrays is examined. The technique is applicable in the case of equi-spaced linear arrays with equal phase and symmetric excitation coefficients and circular arrays with quadrant symmetry, with the number of elements divisible by 4. The technique is based on formulating the synthesis process as a least-squared optimization problem. Some design examples are presented to illustrate the potential and the quality of the considered technique.","PeriodicalId":250544,"journal":{"name":"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An eigen space approach for the synthesis of circular arrays\",\"authors\":\"A.-E.-F.A. Abou-Hashem, S. El-Khamy\",\"doi\":\"10.1109/NRSC.1999.760880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An eigen space non-iterative technique for the synthesis of both linear and circular arrays is examined. The technique is applicable in the case of equi-spaced linear arrays with equal phase and symmetric excitation coefficients and circular arrays with quadrant symmetry, with the number of elements divisible by 4. The technique is based on formulating the synthesis process as a least-squared optimization problem. Some design examples are presented to illustrate the potential and the quality of the considered technique.\",\"PeriodicalId\":250544,\"journal\":{\"name\":\"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.1999.760880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.1999.760880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种用于线性阵列和圆形阵列综合的本征空间非迭代技术。该技术适用于具有等相位对称激励系数的等间距线性阵列和具有象限对称的单元数可被4整除的圆形阵列。该技术基于将综合过程表述为最小二乘优化问题。给出了一些设计实例来说明所考虑的技术的潜力和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An eigen space approach for the synthesis of circular arrays
An eigen space non-iterative technique for the synthesis of both linear and circular arrays is examined. The technique is applicable in the case of equi-spaced linear arrays with equal phase and symmetric excitation coefficients and circular arrays with quadrant symmetry, with the number of elements divisible by 4. The technique is based on formulating the synthesis process as a least-squared optimization problem. Some design examples are presented to illustrate the potential and the quality of the considered technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信